71 research outputs found

    Apoptotic gene expression in neuropathic pain

    Get PDF
    Pain initiated or caused by a primary lesion or dysfunction in the nervous system is defined as neuropathic pain. It results from direct injury to nerves in the peripheral or central nervous system and is associated with several clinical symptoms. Neuropathic pain treatment is extremely difficult, as it is a very complex disease, involving several molecular pathways. Excitatory or inhibitory pathways controlling neuropathic pain development show altered gene expression, caused by peripheral nerve injury.
This study used several experimental pain models to demonstrate the occurrence of programmed cell death in the centers controlling pain induction and maintenance, such as spinal cord and pre-frontal cortex. We combined behavioural, molecular and morphological approaches to assess the involvement of bcl-2 gene family and caspases in neuropathic pain. Chronic constriction injury (CCI) and spared nerve injury (SNI) of rodent sciatic nerve induced the appearance of pain-like behaviours, such as hyperalgesia and allodynia. An early (2-3 days post-CCI) apoptosis appeared in the spinal cord neurons as the pro-apoptotic bax gene increased (320±19%). The incidence of apoptosis appeared to be limited to the first few days following nerve injury. Subsequently, increased expression of anti-apoptotic bcl-2 family genes may inhibit further neuron loss. SNI triggered apoptotic pathway and caspases activation in pre-frontal cortex 7, 14, and 21 days post-injury. Among the time-points analyzed, RT-PCR analysis showed increased expression of the bax/bcl-2 ratio (40±2%), bid (16±2%), caspase-1 (84±3%), caspase-8 (53±6%), caspase-9 (25±6%), caspase-12 (58±2%), TNF (32±2%) genes in the cortex by 7 days post-injury. Western blot analysis showed increased active Caspase-3 protein levels in the cortex at 3, 7, 14, and 21 post-surgery. This study shows that apoptotic genes could be an useful pharmacological target in neuropathic pain controlling.
&#xa

    Role of Neurotrophins in Neuropathic Pain

    Get PDF
    Neurotrophins (NTs) belong to a family of structurally and functionally related proteins, they are the subsets of neurotrophic factors. Neurotrophins are responsible for diverse actions in the developing peripheral and central nervous systems. They are important regulators of neuronal function, affecting neuronal survival and growth. They are able to regulate cell death and survival in development as well as in pathophysiologic states. NTs and their receptors are expressed in areas of the brain that undergo plasticity, indicating that they are able to modulate synaptic plasticity

    Autism Spectrum Disorders: Is Mesenchymal Stem Cell Personalized Therapy the Future?

    Get PDF
    Autism and autism spectrum disorders (ASDs) are heterogeneous neurodevelopmental disorders. They are enigmatic conditions that have their origins in the interaction of genes and environmental factors. ASDs are characterized by dysfunctions in social interaction and communication skills, in addition to repetitive and stereotypic verbal and nonverbal behaviours. Immune dysfunction has been confirmed with autistic children. There are no defined mechanisms of pathogenesis or curative therapy presently available. Indeed, ASDs are still untreatable. Available treatments for autism can be divided into behavioural, nutritional, and medical approaches, although no defined standard approach exists. Nowadays, stem cell therapy represents the great promise for the future of molecular medicine. Among the stem cell population, mesenchymal stem cells (MSCs) show probably best potential good results in medical research. Due to the particular immune and neural dysregulation observed in ASDs, mesenchymal stem cell transplantation could offer a unique tool to provide better resolution for this disease

    Long-Lasting Effects of Human Mesenchymal Stem Cell Systemic Administration on Pain-Like Behaviors, Cellular, and Biomolecular Modifications in Neuropathic Mice

    Get PDF
    Background: Neuropathic pain (NP) is an incurable disease caused by a primary lesion in the nervous system. NP is a progressive nervous system disease that results from poorly defined neurophysiological and neurochemical changes. Its treatment is very difficult. Current available therapeutic drugs have a generalized nature, sometime acting only on the temporal pain properties rather than targeting the several mechanisms underlying the generation and propagation of pain. Methods: Using biomolecular and immunohistochemical methods, we investigated the effect of the systemic injection of human mesenchymal stem cells (hMSCs) on NP relief. We used the spared nerve injury (SNI) model of NP in the mouse. hMSCs were injected into the tail vein of the mouse. Stem cell injection was performed 4 days after sciatic nerve surgery. Neuropathic mice were monitored every 10 days starting from day 11 until 90 days after surgery. Results: hMSCs were able to reduce pain-like behaviors, such as mechanical allodynia and thermal hyperalgesia, once injected into the tail vein. An anti-nociceptive effect was detectable from day 11 post surgery (7 days post cell injection). hMSCs were mainly able to home in the spinal cord and pre-frontal cortex of neuropathic mice. Injected hMSCs reduced the protein levels of the mouse pro-inflammatory interleukin IL-1β and IL-17 and increased protein levels of the mouse anti-inflammatory interleukin IL-10, and the marker of alternatively activated macrophages CD106 in the spinal cord of SNI mice. Conclusion: As a potential mechanism of action of hMSCs in reducing pain, we suggest that they could exert their beneficial action through a restorative mechanism involving: (i) a cell-to-cell contact activation mechanism, through which spinal cord homed hMSCs are responsible for switching pro-inflammatory macrophages to anti-inflammatory macrophages; (ii) secretion of a broad spectrum of molecules to communicate with other cell types. This study could provide novel findings in MSC pre-clinical biology and their therapeutic potential in regenerative medicine

    Estradiol via estrogen receptor beta influences ROS levels through the transcriptional regulation of SIRT3 in human seminoma TCam-2 cells

    Get PDF
    Human testis, gonocytes, and adult germ cells mainly express estrogen receptor beta, and estrogen receptor beta loss is associated with advanced tumor stage; however, the molecular mechanisms of estrogen receptor beta–protective effects are still to be defined. Herein, we provide evidence that in human seminoma TCam-2 cells, E2 through estrogen receptor beta upregulates the mitochondrial deacetylase sirtuin-3 at protein and messenger RNA levels. Specifically, E2 increases sirtuin-3 expression through a transcriptional mechanism due to the occupancy of sirtuin-3 promoter by estrogen receptor beta, together with the transcription factor Sp1 as evidenced by Chip reChIp assay. This complex binds to a GC cluster located between −128 bp/+1 bp and is fundamental for E2 effects, as demonstrated by Sp1 small interfering RNA studies. Beside, after 24 h, E2 stimulus significantly increased activities of superoxide dismutase and catalase to scavenge reactive oxygen species produced by 30 min of E2 stimulus. In summar..

    Integrating mammography screening programmes into specialist breast centres in Italy: insights from a national survey of Senonetwork breast centres

    Get PDF
    Background: Despite recommendations, mammography screening is often insufficiently integrated into specialist breast centres. A national, cross-sectional, voluntary, online survey on this issue was carried out among the Italian breast centres associated with Senonetwork, the Italian network of breast cancer services. Methods: A 73-item questionnaire was created, pre-tested and piloted. Centres integrating and not integrating a screening programme were compared using the unified theory of acceptance and use of technology (UTAUT) model. Centres' clustering was performed using the Gower's distance metric. Groups and clusters were compared with the equality-of-means test. Results: The response rate was 82/128 (65%). Overall, 84% (69/82) breast centres reported a collaboration with a screening programme in performing and/or reading mammograms and in the diagnostic work-up of women with abnormal screening results. The same proportion was observed among those centres responding to all questions (62/74). Performance expectancies (or the perceived usefulness of integration in terms of clinical quality, patient convenience, ease of job, and professional growth), satisfaction and motivation were higher in those centres collaborating with the screening programme. Effort expectancy indicators (or the degree to which the respondents believe that the integration is easy to implement) and those concerning the existence of facilitating conditions were lower both in centres collaborating and not collaborating with the screening programme. Among the former, six clusters of centres, distributed from 'no integration' to 'high', were identified. In cluster analysis, the highest level of integration was associated with higher agreement that integration eases the job, offers better opportunities for professional growth, and makes the working environment more satisfactory. The least integrated cluster assigned the lowest score to the statement that local health authority made available the resources needed. Conclusions: While confirming the positive effects of integrating screening programmes into breast centres, this survey has brought to light specific difficulties that must be faced. The results provide insights into the importance of integration focusing on the perspectives of professional career and motivation. The deficiency of facilitating conditions to integration is modifiable. Screening professionals' societies may have a role as initiators of the integration. Other supporting actions may be included in health laws at the national and regional level

    Distribution pattern of hepatitis C virus genotypes and correlation with viral load and risk factors in chronic positive patients.

    Get PDF
    Objective: Hepatitis C virus (HCV) has emerged as a leading cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide. The purpose of this study was to describe the distribution pattern of HCV genotypes in chronic hepatitis patients in the Campania region of southern Italy and estimate their association with risk factors and viral load. Materials and Methods: 404 consecutive HCV ribonucleic acid-positive patients were included in the study. HCV genotyping was carried out by the HCV line probe assay test and viral load estimation by the TaqMan real-time PCR system. Results: The predominant genotype was 1 (63.6%), followed by genotype 2 (29.4%), 3 (6.2%) and 4 (0.8%). Subtype 1b was more frequent in females than in males. Conversely, genotype 3 was more frequent in males. No significant difference was observed in age distribution of HCV genotypes. Surgery and dental therapy were the most frequent risk factors for genotype 1 and intravenous drug abuse and tattooing for genotype 3. Patients with genotype 1 more frequently showed high HCV viral load when compared to those with genotypes 2 and 3. Conclusion: The present study revealed that HCV genotypes 1 and 2 accounted for over 95% of all HCV infections in the Campania region, and genotype 1 was more frequently associated with a higher viral load when compared to genotypes 2 and 3

    Discovery of Prostamide F2α and Its Role in Inflammatory Pain and Dorsal Horn Nociceptive Neuron Hyperexcitability

    Get PDF
    It was suggested that endocannabinoids are metabolized by cyclooxygenase (COX)-2 in the spinal cord of rats with kaolin/λ-carrageenan-induced knee inflammation, and that this mechanism contributes to the analgesic effects of COX-2 inhibitors in this experimental model. We report the development of a specific method for the identification of endocannabinoid COX-2 metabolites, its application to measure the levels of these compounds in tissues, and the finding of prostamide F2α (PMF2α) in mice with knee inflammation. Whereas the levels of spinal endocannabinoids were not significantly altered by kaolin/λ-carrageenan-induced knee inflammation, those of the COX-2 metabolite of AEA, PMF2α, were strongly elevated. The formation of PMF2α was reduced by indomethacin (a non-selective COX inhibitor), NS-398 (a selective COX-2 inhibitor) and SC-560 (a selective COX-1 inhibitor). In healthy mice, spinal application of PMF2α increased the firing of nociceptive (NS) neurons, and correspondingly reduced the threshold of paw withdrawal latency (PWL). These effects were attenuated by the PMF2α receptor antagonist AGN211336, but not by the FP receptor antagonist AL8810. Also prostaglandin F2α increased NS neuron firing and reduced the threshold of PWL in healthy mice, and these effects were antagonized by AL8810, and not by AGN211336. In mice with kaolin/λ-carrageenan-induced knee inflammation, AGN211336, but not AL8810, reduced the inflammation-induced NS neuron firing and reduction of PWL. These findings suggest that inflammation-induced, and prostanoid-mediated, enhancement of dorsal horn NS neuron firing stimulates the production of spinal PMF2α, which in turn contributes to further NS neuron firing and pain transmission by activating specific receptors
    corecore