research

Apoptotic gene expression in neuropathic pain

Abstract

Pain initiated or caused by a primary lesion or dysfunction in the nervous system is defined as neuropathic pain. It results from direct injury to nerves in the peripheral or central nervous system and is associated with several clinical symptoms. Neuropathic pain treatment is extremely difficult, as it is a very complex disease, involving several molecular pathways. Excitatory or inhibitory pathways controlling neuropathic pain development show altered gene expression, caused by peripheral nerve injury.
This study used several experimental pain models to demonstrate the occurrence of programmed cell death in the centers controlling pain induction and maintenance, such as spinal cord and pre-frontal cortex. We combined behavioural, molecular and morphological approaches to assess the involvement of bcl-2 gene family and caspases in neuropathic pain. Chronic constriction injury (CCI) and spared nerve injury (SNI) of rodent sciatic nerve induced the appearance of pain-like behaviours, such as hyperalgesia and allodynia. An early (2-3 days post-CCI) apoptosis appeared in the spinal cord neurons as the pro-apoptotic bax gene increased (320±19%). The incidence of apoptosis appeared to be limited to the first few days following nerve injury. Subsequently, increased expression of anti-apoptotic bcl-2 family genes may inhibit further neuron loss. SNI triggered apoptotic pathway and caspases activation in pre-frontal cortex 7, 14, and 21 days post-injury. Among the time-points analyzed, RT-PCR analysis showed increased expression of the bax/bcl-2 ratio (40±2%), bid (16±2%), caspase-1 (84±3%), caspase-8 (53±6%), caspase-9 (25±6%), caspase-12 (58±2%), TNF (32±2%) genes in the cortex by 7 days post-injury. Western blot analysis showed increased active Caspase-3 protein levels in the cortex at 3, 7, 14, and 21 post-surgery. This study shows that apoptotic genes could be an useful pharmacological target in neuropathic pain controlling.
&#xa

    Similar works