215 research outputs found

    A crystal mush perspective explains magma variability at la fossa volcano (Vulcano, Italy)

    Get PDF
    The eruptive products of the last 1000 years at La Fossa volcano on the island of Vulcano (Italy) are characterized by abrupt changes of chemical composition that span from latite to rhyolite. The wide variety of textural features of these products has given rise to several petrological models dealing with the mingling/mixing processes involving mafic-intermediate and rhyolitic magmas. In this paper, we use published whole-rock data for the erupted products of La Fossa and combine them in geochemical and thermodynamic modelling in order to provide new constrains for the interpretations of the dynamics of the active magmatic system. The obtained results allow us to pic-ture a polybaric plumbing system characterized by multiple magma reservoirs and related crystal mushes, formed from time to time during the differentiation of shoshonitic magmas, to produce latites, trachytes and rhyolites. The residing crystal mushes are periodically perturbated by new, fresh magma injections that, on one hand, induce the partial melting of the mush and, on the other hand, favor the extraction of highly differentiated interstitial melts. The subsequent mixing and mingling of mush-derived melts ultimately determine the formation of magmas erupted at La Fossa, whose textural and chemical features are otherwise not explained by simple assimilation and fractional crystallization models. In such a system, the compositional variability of the erupted products reflects the complexity of the physical and chemical interactions among recharging mag-mas and the crystal mushes

    Stratigraphic framework of the late Miocene to Pliocene Pisco Formation at Cerro Colorado (Ica Desert, Peru).

    Get PDF
    This paper describes a 200 m-thick section of the Pisco Formation exposed at Cerro Colorado, an important fossiliferous site in the Ica desert. In order to properly place the fauna in its correct relative position, this study establishes the stratigraphic framework within which the different fossil-bearing intervals of this site can be compared and may prove invaluable in future high-resolution studies on the faunal change. Most of the Pisco Formation deposits exposed at Cerro Colorado consist of gently dipping fine-grained sandstones, diatomaceous siltstones and diatomites with minor ash layers and dolomites deposited within nearshore and offshore settings. To facilitate detailed stratigraphic correlations within the Pisco strata for a 30 km2 area, eight marker beds have been defined and large-scale (1:10,000 scale) geological mapping conducted to determine fault positions, styles and offsets. The geological map shows that there are two important angular unconformities in the study area. The first one is the interformational basal unconformity of the Pisco Formation against folded, faulted, and planated Oligo-Miocene rocks of the Chilcatay Formation. The second is a low-angle intraformational erosional discontinuity of up to 4° angular discordance that allows the subdivision of the Pisco stratigraphy exposed in the study area into two informal allomembers. Dating of the exposed succession by diatom biostratigraphy suggests that the age of the lower allomember is late Miocene, whereas the upper allomember is late Miocene or younger

    Stratigraphic framework of the late Miocene Pisco Formation at Cerro Los Quesos (Ica Desert, Peru)

    Get PDF
    The enormous concentration of marine vertebrates documented within the Pisco Formation is unique for Peru and South America and places this unit among the prime fossil Lagerstätten for Miocene to Pliocene marine mammals worldwide. In order to provide a robust stratigraphic framework for the fossil-bearing locality of Cerro Los Quesos, this study presents a 1:10,000 scale geological map covering an area of about 21 km2, a detailed measured section spanning 290 m of strata, and a refined chronostratigraphy for the studied succession well constrained by diatom biostratigraphy and high-resolution 40Ar/39Ar isotopic dating of three interbedded ash layers. Within the apparently monotonous, diatomite-dominated sedimentary section, the Pisco Formation has been subdivided into six local members, with stratigraphic control over the different outcrops facilitated by the establishment of a detailed marker bed stratigraphy based on fifteen readily distinguishable sediment layers of different nature

    Facies analysis, stratigraphy and marine vertebrate assemblage of the lower Miocene Chilcatay Formation at Ullujaya (Pisco basin, Peru)

    Get PDF
    This paper is the first integrated account of the sedimentology, stratigraphy and vertebrate paleontology for the marine strata of the Chilcatay Formation exposed at Ullujaya, Pisco basin (southern Peru). An allostratigraphic framework for the investigated strata was established using geological mapping (1:4,000 scale) and conventional sedimentary facies analysis and resulted in recognition of two unconformity-bounded allomembers (designated Ct1 and Ct2 in ascending order). The chronostratigraphic framework is well constrained by integration of micropaleontological data and isotope geochronology and indicates deposition during the early Miocene. The marine vertebrate fossil assemblage is largely dominated by cetaceans (odontocetes), whereas isolated teeth and spines indicate a well-diversified elasmobranch assemblage. Our field surveys, conducted to evaluate the paleontological sensitivity of the investigated strata, indicate that vertebrate remains only came from a rather restricted stratigraphic interval of the Ct1 allomember and reveal the high potential for these sediments to yield abundant and scientifically significant fossil assemblages

    Facies analysis, stratigraphy and marine vertebrate assemblage of the lower Miocene Chilcatay Formation at Ullujaya (Pisco basin, Peru)

    Get PDF
    This paper is the first integrated account of the sedimentology, stratigraphy and vertebrate paleontology for the marine strata of the Chilcatay Formation exposed at Ullujaya, Pisco basin (southern Peru). An allostratigraphic framework for the investigated strata was established using geological mapping (1:4,000 scale) and conventional sedimentary facies analysis and resulted in recognition of two unconformity-bounded allomembers (designated Ct1 and Ct2 in ascending order). The chronostratigraphic framework is well constrained by integration of micropaleontological data and isotope geochronology and indicates deposition during the early Miocene. The marine vertebrate fossil assemblage is largely dominated by cetaceans (odontocetes), whereas isolated teeth and spines indicate a well-diversified elasmobranch assemblage. Our field surveys, conducted to evaluate the paleontological sensitivity of the investigated strata, indicate that vertebrate remains only came from a rather restricted stratigraphic interval of the Ct1 allomember and reveal the high potential for these sediments to yield abundant and scientifically significant fossil assemblages

    Deciphering the tectono-stratigraphic evolution of the East Pisco Basin (southern Peru): new insights from the geological mapping of its central portion

    Get PDF
    The Cenozoic fill of the East Pisco Basin (EPB) preserves the sedimentary record of several episodes of deformation of the forearc crust along the Peruvian margin. The 1:50,000 scale geological map presented here covers an area of about 1,000 km2 lying astride the Ica River and, by establishing a first-order tectonostratigraphic frame for the exposed mid-Eocene–upper Miocene succession, contributes to our understanding of the timing and mode of basin filling and deformation. In the study area, deposition initiated onto the PaE0 nonconformity during the middle Eocene time and continued under an extensional regime until early Oligocene time, with a break in deposition recorded by the OE0 unconformity separating the Paracas and Otuma sequences (megasequence P). During this time interval, a single forearc Pisco Basin extended between an offshore outer forearc high and the Western Cordillera. An Oligocene relative sea-level fall, probably resulting from a combination of tectonic inversion and multiple events of eustatic lowstand, led the Pisco Basin to become subaerially exposed. Evidence for this phase of deformation is recorded by the conspicuous CE0 angular unconformity interposed between megasequences P and N. The oldest normal fault populations documented here consist of NNW- and ENE-trending faults largely predating the CE0 erosional hiatus. This widespread extensional faulting was accompanied by the exhumation of the Outer Shelf High-Coastal Cordillera, which segmented the earlier, Paleogene Pisco Basin into the present-day inner EPB and outer West Pisco Basin. Different tectonic processes have been invoked to explain the Oligocene uplift of the extensional Peruvian forearc basins and formation of the Outer Shelf High, including crustal thickening by underplating at an erosive margin or inversion by propagation of basement-rooted, westverging thrust faults. By earliest Miocene time, uplift ceased and subduction erosion and thinning of the overriding plate resulted in renewed subsidence, rise in relative sea level, and marine transgression over the CE0 unconformity with deposition of the lower Miocene Chilcatay and middle to upper Miocene Pisco composite sequences (megasequence N). The early Miocene phase of extension and associated subsidence was followed by a late Miocene contractional tectonic event, with shortening being accommodated by: (i) oblique-slip (reverse plus dextral) reactivation of inherited NE-trending extensional faults, and development of associated fault-parallel hanging-wall anticlines; and (ii) renewal tectonic uplift of the southwestern basin margin, as suggested by the fanning geometry of the northeast-dipping strata of the Pisco composite sequence and their progressive onlap on top of the basement towards the northeastern, internal margin of the basin

    Fluidal pyroclasts reveal the intensity of peralkaline rhyolite pumice cone eruptions

    Get PDF
    This work is a contribution to the Natural Environment Research Council (NERC) funded RiftVolc project (NE/L013932/1, Rift volcanism: past, present and future) through which several of the authors are supported. In addition, Clarke was funded by a NERC doctoral training partnership grant (NE/L002558/1).Peralkaline rhyolites are medium to low viscosity, volatile-rich magmas typically associated with rift zones and extensional settings. The dynamics of peralkaline rhyolite eruptions remain elusive with no direct observations recorded, significantly hindering the assessment of hazard and risk. Here we describe uniquely-preserved, fluidal-shaped pyroclasts found within pumice cone deposits at Aluto, a peralkaline rhyolite caldera in the Main Ethiopian Rift. We use a combination of field-observations, geochemistry, X-ray computed microtomography (XCT) and thermal-modelling to investigate how these pyroclasts are formed. We find that they deform during flight and, depending on size, quench prior to deposition or continue to inflate then quench in-situ. These findings reveal important characteristics of the eruptions that gave rise to them: that despite the relatively low viscosity of these magmas, and similarities to basaltic scoria-cone deposits, moderate to intense, unstable, eruption columns are developed; meaning that such eruptions can generate extensive tephra-fall and pyroclastic density currents.Publisher PDFPeer reviewe

    Analisi petrografiche

    No full text
    • …
    corecore