466 research outputs found

    Morphostructural MRI abnormalities related to neuropsychiatric disorders associated to multiple sclerosis.

    Get PDF
    Multiple Sclerosis associated neuropsychiatric disorders include major depression (MD), obsessive-compulsive disorder (OCD), bipolar affective disorder, euphoria, pseudobulbar affect, psychosis, and personality change. Magnetic Resonance Imaging (MRI) studies focused mainly on identifying morphostructural correlates of MD; only a few anecdotal cases on OCD associated to MS (OCD-MS), euphoria, pseudobulbar affect, psychosis, personality change, and one research article on MRI abnormalities in OCD-MS have been published. Therefore, in the present review we will report mainly on neuroimaging abnormalities found in MS patients with MD and OCD. All together, the studies on MD associated to MS suggest that, in this disease, depression is linked to a damage involving mainly frontotemporal regions either with discrete lesions (with those visible in T1 weighted images playing a more significant role) or subtle normal appearing white matter abnormalities. Hippocampal atrophy, as well, seems to be involved in MS related depression. It is conceivable that grey matter pathology (i.e., global and regional atrophy, cortical lesions), which occurs early in the course of disease, may involve several areas including the dorsolateral prefrontal cortex, the orbitofrontal cortex, and the anterior cingulate cortex whose disruption is currently thought to explain late-life depression. Further MRI studies are necessary to better elucidate OCD pathogenesis in MS

    Pain perception and migraine

    Get PDF
    Background: It is well-known that both inter-and intra-individual differences exist in the perception of pain; this is especially true in migraine, an elusive pain disorder of the head. Although electrophysiology and neuroimaging techniques have greatly contributed to a better understanding of the mechanisms involved in migraine during recent decades, the exact characteristics of pain threshold and pain intensity perception remain to be determined, and continue to be a matter of debate.Objective: The aim of this review is to provide a comprehensive overview of clinical, electrophysiological, and functional neuroimaging studies investigating changes during various phases of the so-called "migraine cycle" and in different migraine phenotypes, using pain threshold and pain intensity perception assessments.Methods: A systematic search for qualitative studies was conducted using search terms "migraine," "pain," "headache," "temporal summation," "quantitative sensory testing," and "threshold," alone and in combination (subject headings and keywords). The literature search was updated using the additional keywords "pain intensity," and "neuroimaging"to identify full-text papers written in English and published in peer-reviewed journals, using PubMed and Google Scholar databases. In addition, we manually searched the reference lists of all research articles and review articles.Conclusion: Consistent data indicate that pain threshold is lower during the ictal phase than during the interictal phase of migraine or healthy controls in response to pressure, cold and heat stimuli. There is evidence for preictal sub-allodynia, whereas interictal results are conflicting due to either reduced or no observed difference in pain threshold. On the other hand, despite methodological limitations, converging observations support the concept that migraine attacks may be characterized by an increased pain intensity perception, which normalizes between episodes. Nevertheless, future studies are required to longitudinally evaluate a large group of patients before and after pharmacological and non-pharmacological interventions to investigate phases of the migraine cycle, clinical parameters of disease severity and chronic medication usage

    Widespread Structural and Functional Connectivity Changes in Amyotrophic Lateral Sclerosis: Insights from Advanced Neuroimaging Research

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease principally affecting motor neurons. Besides motor symptoms, a subset of patients develop cognitive disturbances or even frontotemporal dementia (FTD), indicating that ALS may also involve extramotor brain regions. Both neuropathological and neuroimaging findings have provided further insight on the widespread effect of the neurodegeneration on brain connectivity and the underlying neurobiology of motor neurons degeneration. However, associated effects on motor and extramotor brain networks are largely unknown. Particularly, neuropathological findings suggest that ALS not only affects the frontotemporal network but rather is part of a wide clinicopathological spectrum of brain disorders known as TAR-DNA binding protein 43 (TDP-43) proteinopathies. This paper reviews the current state of knowledge concerning the neuropsychological and neuropathological sequelae of TDP-43 proteinopathies, with special focus on the neuroimaging findings associated with cognitive change in ALS

    P019. Transcutaneous supraorbital neurostimulation in “de novo” patients with migraine without aura: the first Italian experience

    Get PDF
    Transcutaneous supraorbital neurostimulation (tSNS) has been recently found superior to sham stimulation for episodic migraine prevention in a randomized trial. We evaluated both the safety and efficacy of a brief period of tSNS in a group of patients with migraine without aura (MwoA)

    Impulse Control Behaviors in Parkinson's Disease: Drugs or Disease? Contribution From Imaging Studies

    Get PDF
    Impulse control behaviors (ICB) are recognized as non-motor complications of dopaminergic medications in patients with Parkinson's disease (PD). Compelling evidence suggests that ICB are not merely due to the PD-related pathology itself. Several risk factors have been identified, either demographic, clinical, genetic or neuropsychological. Neuroimaging studies have yielded controversial results regarding ICB correlates in PD and still it is not clear whether they can be triggered by the PD biology or the dopaminergic treatment stimulation. We provided an overview of the imaging studies that offered the most relevant insights into the debate about the role of drugs and disease in ICB pathophysiology. Understanding neural correlates and potential predisposing factors of these severe neuropsychiatric symptoms will be crucial to guide clinical practice and to foster preventive strategies

    Differences in education systems across OECD countries: the role of education policy preferences in a hierarchical system

    Get PDF
    The design of the educational system affects the degree of students’ equality of opportunities and the intergenerational social mobility. The topic is therefore of paramount importance. In this paper, we document differences in educational systems among OECD countries and argue that the system observed in a country is the result of a complex interaction between preferences for education and political competition. To analyse individual preferences over education funding, we build a model that allows us to study the effects of public funding on the welfare of agents, which are heterogeneous in terms of income and human capital. The model takes into account the hierarchical nature of the educational system and emphasises the role played by family background. Our theoretical results might help to explain why some OECD countries seem to remain stuck in “low education” traps

    Telemedicine in Parkinson's Disease: How to Ensure Patient Needs and Continuity of Care at the Time of COVID-19 Pandemic

    Get PDF
    Introduction: With the spread of the SARS-CoV2 pandemic, telemedicine has become the safest way to guarantee care continuity, especially for chronic disabling diseases requiring frequent medical consultations and therapeutic adjustments, such as Parkinson's disease (PD). The age-related prevalence of PD, combined with increased vulnerability due to age-related comorbidities, makes PD patients protection a priority. Methodology: We reviewed potentials and limitations of teleneurology in PD and suggested a specific battery of tests, including patient-reported outcomes, smartphone applications, and neurological examination through telemedicine. Conclusions: These tools can provide full neurological consultations, with the engagement of both patients and caregivers, and can support clinicians in defining whether patients need to access diagnostic and therapeutic procedures. Telemedicine will also carry a value in the future, within conventional health care, to support clinicians in decision making, enabling more efficacious follow-up, reducing burden for caregivers, and delivering neurological expertise to local realities. These advantages are very important when there is physical distance between patients and neurologists, and when patients are not recommended to attend in-person consultations

    Amyotrophic Lateral Sclerosis and Multiple Sclerosis Overlap: A Case Report

    Get PDF
    The concurrence of amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) is extremely rare. We reported the case of a 33-year-old woman with a past history of paresthesias at the right hand, who developed progressive quadriparesis with muscular atrophy of limbs and, finally, bulbar signs and dyspnea. Clinical and neurophysiologic investigations revealed upper and lower motor neuron signs in the bulbar region and extremities, suggesting the diagnosis of ALS. Moreover, magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) analysis demonstrated 3 periventricular and juxtacortical lesions, hyperintense in T2 and FLAIR sequences, and 3 liquoral immunoglobulin G (IgG) oligoclonal bands, consistent with diagnosis of primary progressive MS (PPMS). This unusual overlap of ALS and MS leads to the discussion of a hypothetical common pathological process of immunological dysfunction in these two disorders, although the role of immune response in ALS remains ambivalent and unclear

    Dynamic spectral signatures of mirror movements in the sensorimotor functional connectivity network of patients with Kallmann syndrome

    Get PDF
    In Kallmann syndrome (KS), the peculiar phenomenon of bimanual synkinesis or mirror movement (MM) has been associated with a spectral shift, from lower to higher frequencies, of the resting-state fMRI signal of the large-scale sensorimotor brain network (SMN). To possibly determine whether a similar frequency specificity exists across different functional connectivity SMN states, and to capture spontaneous transitions between them, we investigated the dynamic spectral changes of the SMN functional connectivity in KS patients with and without MM symptom. Brain MRI data were acquired at 3 Tesla in 39 KS patients (32 without MM, KSMM-, seven with MM, KSMM+) and 26 age- and sex-matched healthy control (HC) individuals. The imaging protocol included 20-min rs-fMRI scans enabling detailed spectro-temporal analyses of large-scale functional connectivity brain networks. Group independent component analysis was used to extract the SMN. A sliding window approach was used to extract the dynamic spectral power of the SMN functional connectivity within the canonical physiological frequency range of slow rs-fMRI signal fluctuations (0.01-0.25 Hz). K-means clustering was used to determine (and count) the most recurrent dynamic states of the SMN and detect the number of transitions between them. Two most recurrent states were identified, for which the spectral power peaked at a relatively lower (state 1) and higher (state 2) frequency. Compared to KS patients without MM and HC subjects, the SMN of KS patients with MM displayed significantly larger spectral power changes in the slow 3 canonical sub-band (0.073-0.198 Hz) and significantly fewer transitions between state 1 (less recurrent) and state 2 (more recurrent). These findings demonstrate that the presence of MM in KS patients is associated with reduced spontaneous transitions of the SMN between dynamic functional connectivity states and a higher recurrence and an increased spectral power change of the high-frequency state. These results provide novel information about the large-scale brain functional dynamics that could help to understand the pathologic mechanisms of bimanual synkinesis in KS syndrome and, potentially, other neurological disorders where MM may also occur
    corecore