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In Kallmann syndrome (KS), the peculiar phenomenon of bimanual synkinesis

or mirror movement (MM) has been associated with a spectral shift, from

lower to higher frequencies, of the resting-state fMRI signal of the large-

scale sensorimotor brain network (SMN). To possibly determine whether a

similar frequency specificity exists across different functional connectivity

SMN states, and to capture spontaneous transitions between them, we

investigated the dynamic spectral changes of the SMN functional connectivity

in KS patients with and without MM symptom. Brain MRI data were acquired

at 3 Tesla in 39 KS patients (32 without MM, KSMM-, seven with MM,

KSMM+) and 26 age- and sex-matched healthy control (HC) individuals. The

imaging protocol included 20-min rs-fMRI scans enabling detailed spectro-

temporal analyses of large-scale functional connectivity brain networks.

Group independent component analysis was used to extract the SMN.

A sliding window approach was used to extract the dynamic spectral power of

the SMN functional connectivity within the canonical physiological frequency

range of slow rs-fMRI signal fluctuations (0.01–0.25 Hz). K-means clustering

was used to determine (and count) the most recurrent dynamic states of

the SMN and detect the number of transitions between them. Two most

recurrent states were identified, for which the spectral power peaked at a

relatively lower (state 1) and higher (state 2) frequency. Compared to KS

patients without MM and HC subjects, the SMN of KS patients with MM

displayed significantly larger spectral power changes in the slow 3 canonical

sub-band (0.073–0.198 Hz) and significantly fewer transitions between state 1

(less recurrent) and state 2 (more recurrent). These findings demonstrate that
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the presence of MM in KS patients is associated with reduced spontaneous

transitions of the SMN between dynamic functional connectivity states and

a higher recurrence and an increased spectral power change of the high-

frequency state. These results provide novel information about the large-scale

brain functional dynamics that could help to understand the pathologic

mechanisms of bimanual synkinesis in KS syndrome and, potentially, other

neurological disorders where MM may also occur.

KEYWORDS

Kallmann syndrome, mirror movements, dynamic functional connectivity,
sensorimotor network, K-means, connectivity states

Introduction

The occurrence of involuntary hand movements that
mirror a voluntary movement of the contralateral hand, a
neurological symptom referred to as bimanual synkinesis or
mirror movement (MM), is considered physiological only
during childhood (up to the age of 10) (Beaulé et al., 2012).
However, it could persist during adulthood in congenital
conditions like Kallmann syndrome (KS). An imbalance of the
developing brain motor circuit has been suggested as a possible
cause for reduced suppression of involuntary contralateral hand
movements (Mayston et al., 1997; Farmer et al., 2004).

In a previous resting-state fMRI (rs-fMRI) multi-center
study on KS (Manara et al., 2018), the presence of the MM
symptom was found to be associated with abnormal spectral
changes in the static functional connectivity (sFC) of the
large-scale sensorimotor network (SMN). More specifically,
a relatively lower contribution of the so called “slow-5”
frequency band (0.01–0.027 Hz) together with a relatively higher
contribution of the so called “slow-3” frequency band (0.073–
0.198 Hz), has been reported from the spectral analysis of
the spontaneous fluctuations of the SMN time-course, in KS
patients with MM (MM+) compared to KS patients without
MM (MM−). These effects were further characterized in terms
of imbalance between cortical-cortical functional connectivity
(more prevalent in the slow five band) and cortical-subcortical
functional connectivity (more prevalent in the slow three band)
to explain the reduced suppression of involuntary contra-lateral
hand movements systematically occurring in MM+ patients
when voluntary hand movement is requested.

However, as the human brain is a highly dynamic system,
the resting-state functional connectivity has been largely proven
to be temporally varying (Chang and Glover, 2010). That
is, temporal fluctuations in the functional connectivity of a
large-scale functional network, such as the SMN, may also
reflect dynamic changes in the corresponding domain-specific
functional connectivity with possible non-stationary switching
between two or more discrete recurrent patterns or states. This

has posed the natural question about whether the previously
highlighted spectral signature of the MM symptom in KS
patients constitutes an intrinsic stationary feature of the SMN
functional connectivity, most likely secondary to abnormal
anatomical structures within the motor circuitry, or, rather,
is itself subject to dynamic temporal fluctuations between
recurrent states, provided that a sufficiently long period of time
(e.g., 20 min or more) is used for the observation (Hindriks
et al., 2016). In other words, it is not known whether the
functional connectivity of SMN can exhibit more than one
recurrent (patho)physiological states, whose dynamic features,
such as, e.g., the different contributions to the dynamic spectral
changes in the canonical frequency bands, appear under- or
over-represented in KS subjects manifesting the MM symptom.

As previous results were obtained with a purely static FC
analytic approach, i.e., observing rs-fMRI signals from a large-
scale network over a typical, yet short, period of 5–10 min,
the current study aimed at verifying if a dynamic FC (dFC)
analysis, and more specifically a dynamic spectral power analysis
of the network-specific amplitude of low-frequency fluctuations,
would also disclose similar characteristic dFC features in KS
patients with MM.

The most common and straightforward way to investigate
dFC is using windowed FC (Hutchinson et al., 2013), which
consists of calculating a given FC measure over consecutive and
overlapping segments of the rs-fMRI time-course data (e.g., 1–
2 min), thus providing a time series of FC values, which can
subsequently be used to assess dynamic fluctuations in FC over a
substantially longer rs-fMRI session (e.g., 20–30 min). Such dFC
analysis would also allow to identify the presence of recurrent
spectral patterns for a given large-scale brain network, i.e., two
(or more) dFC states with different spectral characteristics of the
network time-course of activity, between pairs of which the same
network spontaneously fluctuates over time.

To the best of our knowledge, this would be the first rs-
fMRI study investigating, with such a spectral dFC approach,
the possible spectral dFC correlates of MM in KS patients,
thus potentially gathering new insights into the more dynamic
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aspects of the cerebral motor circuitry derangement associated
with the clinical manifestation of the bimanual synkinesis.

Materials and methods

Subjects and experimental design

Thirty-nine patients with KS (38 male, mean age ± SD
32.53 ± 11.61 and one female, age 13) were enrolled for
this study. All patients met the diagnostic criteria for KS,
based on clinical findings and smell analysis (hypogonadotropic
hypogonadism and hypo/anosmia). The study was approved
in accordance with the requirements of the local Ethical
Committee at the University Hospital “San Giovanni Di Dio
e Ruggi D’Aragona” of Salerno and written informed consent
was obtained from patients or their parents. All KS patients
underwent a complete physical and neurological examination
including the evaluation of handedness and the evaluation
of MM according to Woods and Teuber (1978) criteria.
In particular MM were scored as follows: “0” absent; “1”
barely discernible but repetitive movements; “2” either slight
but sustained movement or stronger but briefer repetitive
movement; “3” strong and sustained repetitive movement;
“4” movement equal to that observed in the intended hand:
this phenomenon may be prevalent on the right hand or
on the left one. In this way, subjects were divided into two
groups: KS patients with MM (KSMM+, mean age ± SD:
34.86 ± 16.94) and KS patients without MM (KSMM–, mean
age ± SD: 31.41 ± 10.73). Thus, we have 7 KSMM + and
32 KSMM–. We also scanned 26 healthy age-matched control
subjects without MM.

Table 1 reports the full demographical and clinical profile
of all KS patients including type of olfactory dysfunction
(anosmia/hyposmia), handedness, clinical MRI abnormalities,
grade (0–4) of MM separately for right and left hand and with
side preference of MM.

Magnetic resonance imaging
acquisition

MRI image data sets were acquired on a 3T MRI scanner
(MAGNETOM Skyra, Siemens, Erlangen Germany) equipped
with a 20-channel radiofrequency receive head coil. The imaging
protocol consists of a volumetric anatomical scan, followed by
resting-state fMRI scan.

The anatomical scans were performed with a 3D T1-
weighted magnetization prepared rapid gradient echo sequence
(MPRAGE) with TR/TE: 2400/2.25 ms; resolution: 1 mm;
matrix size: 256 × 256. Resting-state fMRI scans consisted
of 1,800 volumes and 44 slices, performed with a gradient-
echo echo planar imaging (GRE-EPI) with a multiband factor

TABLE 1 Patients’ clinical profile.

Pat.# Olfactory
status

bOb
aplasia/
hypoplasia

MM
(R)

MM
(L)

MM
(R+L)

MM
(R vs.
L)

1 Anosmia Yes No MM No MM No MM n.a.

2 Anosmia Yes No MM No MM No MM n.a.

3 Anosmia Yes No MM No MM No MM n.a.

4 Anosmia Yes No MM No MM No MM n.a.

5 Anosmia Yes No MM No MM No MM n.a.

6 Anosmia Yes No MM No MM No MM n.a.

7 Anosmia Yes No MM No MM No MM n.a.

8 Anosmia Yes No MM No MM No MM n.a.

9 Anosmia Yes No MM No MM No MM n.a.

10 Anosmia Yes No MM No MM No MM n.a.

11 Anosmia Yes No MM No MM No MM n.a.

12 Anosmia Yes No MM No MM No MM n.a.

13 Anosmia Yes No MM No MM No MM n.a.

14 Anosmia Yes No MM No MM No MM n.a.

15 Anosmia Yes No MM No MM No MM n.a.

16 Anosmia Yes No MM No MM No MM n.a.

17 Anosmia Yes No MM No MM No MM n.a.

18 Anosmia Yes No MM No MM No MM n.a.

19 Anosmia Yes No MM No MM No MM n.a.

20 Anosmia Yes No MM No MM No MM n.a.

21 Anosmia Yes No MM No MM No MM n.a.

22 Anosmia Yes No MM No MM No MM n.a.

23 Anosmia Yes No MM No MM No MM n.a.

24 Anosmia Yes No MM No MM No MM n.a.

25 Anosmia Yes No MM No MM No MM n.a.

26 Anosmia Yes No MM No MM No MM n.a.

27 Anosmia Yes No MM No MM No MM n.a.

28 Anosmia Yes No MM No MM No MM n.a.

29 Anosmia Yes No MM No MM No MM n.a.

30 Anosmia Yes No MM No MM No MM n.a.

31 Anosmia Yes No MM No MM No MM n.a.

32 Anosmia Yes No MM No MM No MM n.a.

33 Anosmia Yes 4 3 7 Right

34 Anosmia Yes 2 1 3 Right

35 Anosmia Yes 2 3 5 Left

36 Anosmia Yes 2 0 2 Right

37 Anosmia Yes 3 3 6 No
prev.

38 Anosmia Yes 3 3 6 No
prev.

39 Anosmia Yes 3 2 5 Right

L, left; R, right; MM, grade of mirror movements according to Woods and Teuber criteria;
no prev., no R vs. L prevalence; bOBs, bilateral olfactory bulbs.

of 4 (Feinberg et al., 2010; Moeller et al., 2010; Xu et al.,
2013), TR/TE: 662/30 ms, matrix size: 64 × 64; voxel size:
3 × 3 × 3 mm3, direction of phase encoding acquisition
anterior-posterior. The same GRE-EPI series was repeated two
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more times with only five dynamic scans and opposite phase
encoding directions (anterior-posterior, posterior-anterior) for
the purpose to correct GRE-EPI image distortion (Andersson
et al., 2003; Smith et al., 2004). Each scanning acquisition was
about 25 min long: 20 min for functional imaging and 5 min for
anatomical imaging. During the functional scan, subjects were
asked to simply stay motionless and awake.

Functional magnetic resonance
imaging data preprocessing

Each individual resting-state fMRI time series was first
corrected for the different slice scan acquisition times (via cubic
spline interpolation) and for rigid head motion effects (via
realignment of all volumes to the first) using BrainVoyager
QX (Brain Innovation, Maastricht, Netherlands1). Subsequently,
the image time series were first exported to NIFTI format
for geometrical distortion correction via the TOPUP tool of
FSL (Andersson et al., 2003; Smith et al., 2004). Then, the
subsequent preprocessing steps were performed on distortion-
corrected NIFTI images using the Data Processing Assistant
for Resting-State fMRI (DPARSF) (Yan and Yu-Feng, 2010),2

which is based on Statistical Parametric Mapping (SPM)3 and on
the toolbox for Data Processing and Analysis of Brain Imaging
(DPABI) (Yan et al., 2016).4 The alignment of the first volume
of each subject resting-state fMRI series to the corresponding
anatomical 3D-T1w image was implemented with affine
transformation; then, all T1w images were normalized to
the MNI space with the non-linear diffeomorphic DARTEL
approach (Ashburner, 2007); lastly, the coregistered functional
data were normalized to the MNI space with the transformations
obtained during the DARTEL procedure.

To reduce the residual effects of head motion, as well as the
effects of respiratory and cardiac signals, second-order motion
and physiological nuisance correction were performed using a
linear regression approach: the regression model included 24
motion-related predictors (Friston et al., 1996), with six head
motion parameter time-series, their first-order derivatives and
the 12 corresponding squared parameter time-series; the mean
time-courses from a white matter mask and a cerebrospinal
fluid mask (as obtained from 3D-T1w spatial segmentation)
were added as two additional predictors. In order to account
for residual motion-related spikes, an additional spike-related
regressor was created from the frame wise displacement time-
series, i.e., a predictor with a value of 1 at the time points of
each detected spike and a value of 0 elsewhere (Lemieux et al.,
2007; Satterthwaite et al., 2013). Finally, the image time series

1 www.brainvoyager.com

2 http://rfmri.org/DPARSF

3 http://www.fil.ion.ucl.ac.uk/spm

4 http://rfmri.org/DPABI

were band-pass filtered between 0.01 and 0.5 Hz and spatially
smoothed with an isotropic 6-mm full width at half maximum
(FWHM) Gaussian kernel.

To minimize the potential effects of head motion and
possibly exclude subjects exhibiting excessive amounts of
motion, we applied severe inclusion criteria: the six estimated
head motion parameters (three translation and three rotation)
were considered and subjects exhibiting head translations
>3 mm and/or head rotations >3 degrees were excluded from
consecutive analyses. Then, the mean frame wise displacement
value (FD) was estimated as an additional measure of total
instantaneous head motion (Power et al., 2012; Kim et al.,
2017) and the percentage of spike-corrupted volumes in each
time-series was calculated. Potential spike-corrupted volumes
were identified where the FD value exceeded a threshold of
0.5 mm; at this stage, subjects for whom the percentage of
corrupted volumes exceeded 50% in the scan were also excluded
from the analyses.

Functional magnetic resonance
imaging data analysis

Data were decomposed into functional networks using a
group-level spatial ICA as implemented in the Group ICA
(GICA) of functional MRI Toolbox (GIFT)5 (Calhoun et al.,
2001; Correa et al., 2005). The number of components to be
extracted was estimated from the resting-state fMRI data using
the minimum description length (MDL) criterion (Li et al.,
2007a,b) applied to the concatenated data set of patients and
healthy controls, ensuring the same number of components for
all the patients and healthy controls. Prior to data reduction,
voxel-wise variance normalization was applied to the time
course of each voxel (Beckmann and Smith, 2004; Allen et al.,
2010). Then, two data reduction steps of Principal Component
Analysis (PCA) were performed (subject-specific and group-
level) using the expectation maximization algorithm and the
independent components were extracted using the Infomax
algorithm (Bell and Sejnowski, 1995; Esposito et al., 2002) and
repeated 20 times through ICASSO (Himberg et al., 2004);
finally, the GICA back reconstruction algorithm (Calhoun et al.,
2001; Erhardt et al., 2011) provided participant’s spatial maps
and their corresponding time courses.

For the dFC analysis, a sliding window approach was
performed through custom scripts written in MATLAB R2021a
(The MathWorks Inc., Natick, MA, United States6) to explore
time-varying changes of FC within the individual network
components during functional MRI acquisitions. More in
details, three hundred and thirty-one tapered sliding windows
were obtained by segmenting the time-course of each subject

5 https://github.com/trendscenter/gift

6 www.themathworks.com
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TABLE 2 Frequency range for the four canonical bands.

Bands Frequency interval (Hz)

Slow-5 0.01–0.027

Slow-4 0.027–0.073

Slow-3 0.073–0.198

Slow-2 0.198–0.25

into windows 150 volumes (150 TR = 99.3 s) with a step of five
volumes (5 TR = 3.31 s). In fact, a window size between 30 s and
1 min was shown to be a reasonable choice for capturing brain
dynamics (Shirer et al., 2012; Allen et al., 2014; Damaraju et al.,
2014; Rashid et al., 2014; de Lacy et al., 2017). Using the time-
series data of all selected independent component pairs within
each window, a pairwise covariance matrix was calculated.

Spectral power information was obtained using the time-
course of activity corresponding to the selected individual
independent component. Following Zuo et al. (2010), we
further subdivided the relative contribution of each independent
component time-course spectrum to the whole detectable
frequency range into four separate bands (Table 2). The
cross-spectrum was calculated in MATLAB over the entire
low-frequency range of interest (0.01–0.25 Hz) via the cross-
spectrogram function by specifying a Hamming sliding window.
As a result, a dynamic spectrum connectivity (DSC) matrix
was obtained, representing the changes in the amplitude of the
time-course of network activity as a function of time over the
entire duration of the scan. For the purposes of this study, only
the SMN component was selected and considered. However,
as the SMN connectivity may variably include the contribution
from the subcortical structures, an additional region of interest
(ROI) based analysis of the dynamic functional connectivity
was performed on the fMRI signals from the basal ganglia
and thalamus. Namely, using the Harvard–Oxford subcortical
structural atlas (with 2 mm resolution) distributed with the
FMRIB Software Library, we anatomically subdivided the basal
ganglia into caudate, putamen and pallidum (De Micco et al.,
2019) and downsampled the resulting mask to the size of
fMRI data (3 mm).

To assess recurrent dFC patterns over time, a k-means
clustering algorithm was performed to the windowed DSC
matrix (Allen et al., 2014; Fu et al., 2018, 2019; Espinoza et al.,
2019; Schumacher et al., 2019). The k-means clustering was
applied twice: first, to find the optimal number of clusters via
silhouette criterion, and second, to perform clustering analysis
with the obtained cluster optimal number (Rousseeuw, 1987;
Kim et al., 2017; Fiorenzato et al., 2019). The frequency of
each state was estimated for each subject as the proportion
of windows assigned to a state (cluster). The number of
transitions between different states was also calculated for each
subject. Then, a one-way ANOVA analysis of both frequency
and transitions was performed considering the group as a

between-subject factor with three levels: KSMM+, KSMM- and
healthy controls.

Results

No significant differences were found between HC subjects
and KS patients and between the two KS subgroups (MM−,
MM+) in age and gender. None of the enrolled subjects were
excluded from the analysis as all passed the inclusion criteria
used for the inter- and intra-voxel residual motion effects.

From the GICA analysis, 13 components were extracted
among which the SMN component was selected as the one
whose spatial map exhibited highest z values bilaterally in the
primary and supplementary motor areas and in the primary and
secondary sensory cortices (Figure 1 and Table 3).

The SMN dynamic spectral power data from all subjects and
time windows were used in the k-means clustering, resulting in
two clusters of most recurrent dFC states: state 1, state 2. For the
two states, the mean spectral power (vs. frequency) in the range
between 0.01 and 0.25 Hz and the box plot of the mean spectral
power in the four canonical frequency bands across all subjects
are displayed in Figure 2. According to the peak frequency of
the mean spectral power of each state, state 1 was descriptively
identified as a low-frequency dFC state, whereas state 2 was
descriptively identified as a high-frequency dFC state. Indeed,
across all subjects, the mean spectral power was significantly
higher for state 1 vs. state 2 in the lowest frequency canonical
band (slow 5: one-sample paired t-test, p < 0.0001) whereas the
opposite held true for the other canonical bands (slow 4 and
slow 3: one-sample paired t-test, p < 0.0001; slow 2: one-sample
t-test, p < 0.01).

For each canonical frequency band and each experimental
group (HC, MM−, MM+), the percent signal change in the
mean spectral power associated in average with any transition
between two dFC states across two adjacent time windows
was estimated. The corresponding boxplots are displayed in
Figure 3.

The percent spectral power change associated with the
transitions from state 1 to state 2 was negative for slow 5 and
positive for slow 4, slow 3, and slow 2. The percent spectral
power change for slow 3 band was significantly increased in the
group of MM + patients (and about double in size) compared
to both MM− patients (two-sample t-test, p = 0.0013) and HC
subjects (two-sample t-test, p = 0.0015).

For each subject, both the frequency of occurrence of
each state, i.e., independently of the mean spectral power
in predefined canonical bands, and the frequency of state
transitions between the two states were counted. The box plots
of these counts across experimental groups are displayed in
the Figure 4. While the number (count) of time windows
associated with each state did not significantly differ between
groups or between states, there was a significant group-by-state
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FIGURE 1

Results of GICA analysis. The SMN component was selected as the one with highest z values in the primary and supplementary motor areas and
in the primary and secondary sensory areas.

TABLE 3 Coordinates of the three peaks obtained from the
sensorimotor network map.

Regions MNI coordinates (x, y, z)

Supplementary motor area −1,−20, 67

Left primary motor cortex −18,−35, 70

Right primary motor cortex 17,−35, 74

interaction (2-way ANOVA, p = 0.04). Moreover, even if post hoc
t-test revealed no significant differences in the counts between
subgroups (in both states), there was a significant reduction
in the number of transitions between states in MM+ patients
compared to both HC subjects (two-sample t-test: p = 0.001) and
MM− patients (two-sample t-test, p = 0.013).

From the basal ganglia and thalamus ROI analysis, for each
frequency band, each group (HC, MM−, MM+) and each
ROI, the percent signal change in the mean spectral power
associated in average with any transition between two dFC states
across two adjacent time windows was also estimated but no
significant differences were revealed. Finally, for each subject
and each ROI, both the frequency of occurrence of each state
and the frequency of state transitions between the two states
were counted. One-way ANOVA analysis from basal ganglia
and thalamus ROI analyses revealed no significant differences
in the number of transitions between groups. In each state,
there were no significant differences in term of the frequency
of the occurrences (count of time windows associated with each
state). Moreover, in the same regions, there were no significant
group-by-state interactions (2-way ANOVA).

Discussion

This study explored the dynamic spectral changes of the
intrinsic functional connectivity of the large-scale sensori-motor
brain network in KS patients and HC subjects, demonstrating

that KS patients presenting at the clinical examination with the
phenomenon of bimanual synkinesis (or MM) may also exhibit
different spontaneous fluctuations of the spectral content of
SMN component over a 20 min period of observation between
two most recurrent oscillatory states.

First, we extracted a common group ICA component
for the SMN of the whole group of KS patients and HC
subjects with the purpose of extracting the most general spatial
pattern characterizing the whole-brain co-activation of the most
functionally connected motor regions. Starting from the SMN
group component, the subject-specific SMN time-courses of
activity were submitted to a sliding-window spectral analysis
and a cluster analysis of the spectral power identified two stable
and recurrent dFC states: a low-frequency state (state 1) and a
high-frequency state (state 2).

Many previous studies have supported the notion that
neural oscillations supporting the functional connectivity of the
human brain can exhibit frequency-dependent properties, even
within the small range of slow rs-fMRI signal fluctuations (Zuo
et al., 2010). In general, relatively higher frequency neuronal
oscillations (e.g., in the gamma band in the EEG signal) are
restricted to a relatively smaller spatial scale, whereas long-range
neuronal communications are supported by slower oscillations
(e.g., in delta band of the EEG signal) (Buzsáki and Draguhn,
2004). Accordingly, a general theory for brain oscillations,
regardless of the scale of spatio-temporal observation, would
prescribe that the longer the range of functional connectivity
(among remote brain regions), the lower the frequency of the
functional connectivity signal emerging from the integration of
brain functions, the physiological rationale being that remote
regions with different functional specialization most likely
oscillate at different frequencies (Wang et al., 2016) and several
rs-fMRI studies have shown how the strength of large-scale
networks decreases when the frequency increases (Wu et al.,
2008; Gohel and Biswal, 2015; Li et al., 2015). Particularly,
in the context of large-scale brain functional networks, the
functional processes supporting long-range connections among
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FIGURE 2

Spectral analysis for two clusters of most recurrent dFC states: State 1, State 2. Left: for the two states, the mean logarithm of the spectral power
(vs. frequency) in the range between 0.01 and 0.25 Hz was calculated. According to the peak frequency, state 1 was descriptively identified as a
low-frequency dFC state, whereas state 2 was descriptively identified as a high-frequency dFC state. Right: Box plot of the mean log spectral
power in the four canonical frequency bands across all subjects.

spatially distributed cortical regions normally operate in a lower
frequency band compared to those supporting short-range
connections within more spatially compact subcortical regions
(Buzsáki and Draguhn, 2004). In line with this notion, we had
previously observed how slow 5 fluctuations of rs-fMRI signals
were more characteristic of a cortical-cortical static functional
connectivity, whereas slow 4 and slow 3 were more characteristic
of a cortical-subcortical static functional connectivity [see, e.g.,
Esposito et al. (2013) and Manara et al. (2018)]. Here, for the first
time, we were able to demonstrate that at least two distinct (i.e.,
stable and recurrent) dynamic functional connectivity states
may co-exist in the dynamic functional connectivity of the
SMN in terms of a different contribution of relatively lower-
and higher-frequency oscillatory components. This would imply
that (i) there are shorter windows of time (∼1.5 min) where the
slower cortical-cortical oscillations would prevail in the SMN
functional connectivity against the faster subcortical-cortical

oscillations and that (ii) the SMN network would spontaneously
(and randomly) fluctuate between such periods, the balance
between the occurrences of these two states becoming an
interesting new element for the neuroimaging assessment of
the motor circuitry functional integrity. In the more specific
context of the MM symptom, here we found that, not only
the relative spectral change in the switching between these two
states was in average significantly increased in the slow 3 band
in KS patients with MM (compared to HC subjects and KS
patients without MM), but also the number of such transitions
was significantly reduced in those patients that therefore appear
to persist in the high-frequency dFC state for much longer time
than needed or expected. This demonstrates how MM can be
seen as a clinical manifestation of a neural deficit in dynamic
flexibility of the SMN.

Importantly, the dynamic spectral analysis of the SMN
did not show significant differences between KSMM− patients
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FIGURE 3

Boxplots of the percent signal change in the mean log spectral power associated with transitions between two dFC states for each canonical
frequency band and each experimental group.

FIGURE 4

Left and middle: box plots of the frequency of occurrence in the state 1 and state 2 for each experimental group. Right: box plot of the
frequency of state transitions between the two states.
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and controls, indicating that the dynamic spectral shifts
observed in the motor circuit of KS MM+ patients may
not (primarily) depend on the general KS condition itself or
some specific (KS-related) hormone or treatment differences
between KS patients and controls. In addition, the absence
of regional spectral differences in subcortical ROIs (when
taken in isolation from the SMN) may suggest that the
dynamic functional changes primarily depend upon on long-
range connectivity changes affecting the resting-state cortical
activity. More specifically, following up our previous line of
interpretation (Manara et al., 2018), we could hypothesize
that the spontaneous synchronization of cortical motor areas
is abnormally attracted toward a high-frequency state due to
an abnormal functioning of the cortical-subcortical loop that
controls voluntary movements. On the other hand, the lack
of difference between MM+ patients and healthy controls in
the functional connectivity of basal ganglia and thalamus was
at least unexpected as the role of the interhemispheric control
in the case of unilateral movements is well-known. Thus, we
cannot exclude that this null finding was due to the lack of
statistical power implied by the small size of the MM + group
(including only three patients with right unilateral MM and
only one patient with left unilateral MM) and anyway future
studies (involving a larger sample of MM+ patients) are needed
to address the relation between the changes observed here in
the SMN functional connectivity and the left-right coupling
of the resting-state oscillations across cortical and subcortical
homotopic regions.

The analysis of time-varying brain activity and connectivity
using rs-fMRI has become an important topic of ongoing
neuroscience discussions. Indeed, significant changes in the
temporal dynamics of brain network connectivity (both in terms
of configuration and synchronization) have been reported in
different neurological diseases, thereby some researchers have
hypothesized that this type of analysis might eventually provide
some important biomarkers of disease [see, e.g., Hutchinson
et al. (2013) and Damaraju et al. (2014)].

A crucial point of this study is that KS is a genetic
disease in which we can see some functional aspects of a
neurological disease, including the presence of MMs, that
have originally suggested an involvement of the cerebral
motor circuit. However, in KS, structural data from previous
neuroimaging studies have provided conflicting results [see,
e.g., Krams et al. (1997, 1999), Leinsinger et al. (1997),
Koenigkam-Santos et al. (2008)Koenigkam-Santos et al. (2010),
and Manara et al. (2015)]. For example, abnormal values
of the magnetization transfer ratio at level of the pyramidal
decussation were observed in KS patients independently of the
presence of MM (Koenigkam-Santos et al., 2010), but diffusion
tensor imaging studies did not reveal structural changes of the
cortical-spinal tract in KS patients with or without MM (Manara
et al., 2014, 2015). At the cortical level, KS patients with MM
showed significant cortical thinning in small regions known to

be involved in the voluntary hand motor control and bilateral
volume decrease of the globus pallidum, compared with KS
patients without MM, thus suggesting a complex readjustment
of the motor circuitry associated with bimanual synkinesis
(Manara et al., 2015). Our results would thus confirm in a newly
designed rs-fMRI study on new KS patients, the observations of
a previous study (Manara et al., 2018) based a static functional
connectivity approach, in which the analysis also revealed
a significant group by frequency interaction pointing to a
frequency shift in the spectral content in KS patients. However,
as the present study was purposefully designed to perform a
dynamic functional connectivity analysis, we were here able to
pinpoint a more finally detailed aspect of KSMM+ functional
connectivity: namely that these patients tend to switch from a
lower frequency state of brain connectivity to a higher frequency
with significantly greater facility than healthy controls and
KSMM− patients and consequently tend to spend more time in
this high frequency state.

As mentioned above, a dFC approach similar to the
one presented here has been previously employed in other
psychiatric and neurological diseases, including Schizophrenia,
Parkinson’s Disease, Alzheimer’s Disease, autism or Huntington
disease. In these pathologies, k-means clustering procedures
have usually shown transitions among more than two brain
networks states and the changes between these transitions were
mostly related to cognitive (Rashid et al., 2014; Fiorenzato
et al., 2019; Schumacher et al., 2019) or motor (Kim et al.,
2017) impairments. On the other hand, most KS patients are
cognitively intact and only a small percentage of them develop
bimanual synkinesis, which therefore characterize a very rare
condition. Consequently, the neural underpinnings of MM
phenomenon remain unclear, albeit the dynamic point of view
on the functional connectivity addressed here seems promising
with respect to the need of better addressing this aspect
of the pathology. Of course, larger-sample studies, possibly
integrating dFC from other networks or regions remain needed
to better elucidate the pathogenic mechanism of MM in KS
and in other congenital or acquired conditions, as well as in
neurodegenerative diseases.

In conclusion, we have performed, to our knowledge,
the first dFC analysis of the SMN, determining two discrete
frequency-specific oscillatory states, in KS patients with and
without MM. Major limitations should be considered when
interpreting the results of this study: First, the relatively low
number of KSMM+ patients. We were able to enroll only seven
subjects with MM and this number was too small to address the
possible correlation between the extent of the mirror movement
and the extent of the changes of the network dynamics. Thus, the
precise connection of our findings to the mirror movements in
KS remains unclear. Fortunately, even with such a low number,
significant (albeit few) differences emerged, suggesting that, by
increasing the number of the sample, it will be possible to
gain more evidence about this phenomenon. Second, as KS is
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a disease that mostly affects males, it would be interesting to
evaluate what happens to dFC with more female patients at
disposal, given that only one was included in our KS sample.
Third, little is known, and no data were available, about how
the highlighted transient resting-state connectivity states would
eventually affect the execution of a motor task. Thus, further
work is needed, including the possibility to address this issue
by administering motor tasks to the patients. Related to this,
an important issue to address would be the choice of window
sizes for the sliding-window dFC analysis. Sakoglu et al. (2010)
reported that only an ideal window size should be able to
estimate dFC variability (capturing the low frequency modes of
interest in the rs-fMRI signal) and concurrently detect short-
term task-related effects. In this study, functional dynamics were
estimated using a validated fixed sliding-window of 150 volumes
(about 100s), a measure considered more than reasonable for
a 20-min scan, to robustly capture at least two state and the
corresponding transition counts. Nonetheless, when attempting
to address the influence of the state on the motor response, it is
likely that a trade-off existed between the sensitivity for detecting
potentially interesting transients in dFC and the signal-to-noise
ratio of the task-related FC. Future work should thus evaluate
changes across several window lengths that would be then
combined in multi-scale approach, e.g., using wavelet transform
(Chang and Glover, 2010; Billings et al., 2018). It remains, that
the peculiar phenomenon of MM in KS seems to be a good
pathological model to investigate spectrally selective variations
in long resting-state fMRI sessions and further studies will
possibly confirm or better explain the highlighted dynamics
behind the pathogenic hypothesis of MM.
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