20 research outputs found

    Hicksville Union Free School District and Hicksville School Nurses Association

    Get PDF
    In the Matter of the Fact-Finding between THE BOARD OF EDUCATION OF THE HICKSVILLE UNION FREE SCHOOL DISTRICT and THE HICKSVILLE SCHOOL NURSES ASSOCIATION. PERB Case No: M 2005-264 Eugene S. Ginsberg, Fact Finde

    Oceanside Sanitary District No. 7 and International Brotherhood of Teamsters, Local 854

    Get PDF
    In the matter of the fact-finding between the Oceanside Sanitary District No. 7, employer, and the International Brotherhood of Teamsters, Local 854, union. PERB case no. M2011-197. Before: Eugene S. Ginsberg, fact finder

    Theorizing Institutional Scandal and the Regulatory State

    Get PDF
    One by one, UK public institutions are being scandalised for corruption, immorality or incompetence and subjected to trial by media and criminal prosecution. The state?s historic response to public sector scandal ? denial and neutralisation ? has been replaced with acknowledgement and regulation in the form of the re-vamped public inquiry. Public institutions are being cut adrift and left to account in isolation for their scandalous failures. Yet the state?s attempts to distance itself from its scandalised institutions, while extending its regulatory control over them, are risky. Both the regulatory state and its public inquiries risk being consumed by the scandal they are trying to manage

    High Refractive Index Silicone Gels for Simultaneous Total Internal Reflection Fluorescence and Traction Force Microscopy of Adherent Cells

    Get PDF
    Substrate rigidity profoundly impacts cellular behaviors such as migration, gene expression, and cell fate. Total Internal Reflection Fluorescence (TIRF) microscopy enables selective visualization of the dynamics of substrate adhesions, vesicle trafficking, and biochemical signaling at the cell-substrate interface. Here we apply high-refractive-index silicone gels to perform TIRF microscopy on substrates with a wide range of physiological elastic moduli and simultaneously measure traction forces exerted by cells on the substrate

    Integrin-mediated Protein Kinase A Activation at the Leading Edge of Migrating Cells

    No full text
    cAMP-dependent protein kinase A (PKA) is important in processes requiring localized cell protrusion, such as cell migration and axonal path finding. Here, we used a membrane-targeted PKA biosensor to reveal activation of PKA at the leading edge of migrating cells. Previous studies show that PKA activity promotes protrusion and efficient cell migration. In live migrating cells, membrane-associated PKA activity was highest at the leading edge and required ligation of integrins such as α4β1 or α5β1 and an intact actin cytoskeleton. α4 integrins are type I PKA-specific A-kinase anchoring proteins, and we now find that type I PKA is important for localization of α4β1 integrin-mediated PKA activation at the leading edge. Accumulation of 3′ phosphorylated phosphoinositides [PtdIns(3,4,5)P3] products of phosphatidylinositol 3-kinase (PI3-kinase) is an early event in establishing the directionality of migration; however, polarized PKA activation did not require PI3-kinase activity. Conversely, inhibition of PKA blocked accumulation of a PtdIns(3,4,5)P3-binding protein, the AKT-pleckstrin homology (PH) domain, at the leading edge; hence, PKA is involved in maintaining cell polarity during migration. In sum, we have visualized compartment-specific PKA activation in migrating cells and used it to reveal that adhesion-mediated localized activation of PKA is an early step in directional cell migration

    Protein kinase A governs a RhoA-RhoGDI protrusion-retraction pacemaker in migrating cells

    Get PDF
    The cyclical protrusion and retraction of the leading edge is a hallmark of many migrating cells involved in processes such as development, inflammation and tumorigenesis. The molecular identity of the signalling mechanisms that control these cycles has remained unknown. Here, we used live-cell imaging of biosensors to monitor spontaneous morphodynamic and signalling activities, and employed correlative image analysis to examine the role of cyclic-AMP-activated protein kinase A (PKA) in protrusion regulation. PKA activity at the leading edge is closely synchronized with rapid protrusion and with the activity of RhoA. Ensuing PKA phosphorylation of RhoA and the resulting increased interaction between RhoA and RhoGDI (Rho GDP-dissociation inhibitor) establish a negative feedback mechanism that controls the cycling of RhoA activity at the leading edge. Thus, cooperation between PKA, RhoA and RhoGDI forms a pacemaker that governs the morphodynamic behaviour of migrating cells
    corecore