1,911 research outputs found

    Concept Mapping as an Instructional Method to Support Critical Thinking in Occupational Therapy Students: A Pilot Study

    Get PDF
    In occupational therapy practice, critical thinking is a foundational skill for the delivery of effective care; however, there is limited evidence on the development of critical thinking skills in occupational therapy education. The purpose of this study was to explore the effects and student perceptions of concept mapping on critical thinking skills in occupational therapy education. This study used a quasi-experimental design with a retrospective pre-post assessment after two teaching conditions: (a) traditional lecture and (b) concept mapping. The same convenience sample of students was used for each condition. Additional outcome measures included assessment of student concept maps using a scoring rubric and a survey of students’ perceptions on the use of concept mapping. Results of the retrospective pre-post assessment indicated significant gains in student knowledge (

    Governing the soil: Natural farming and bionationalism in India

    Get PDF
    This article examines India’s response to the global soil health crisis. A longstanding centre of agricultural production and innovation, India has recently launched an ambitious soil health programme. The country’s Soil Health Card (SHC) Scheme intervenes in farm-scale decisions about efficient fertiliser use, envisioning farmers as managers and soil as a substrate for production. India is also home to one of the world’s largest alternative agriculture movements: natural farming. This puts farmer expertise at the centre of soil fertility and attends to the wider ecological health of soils. Despite emerging as a mode of resistance to dominant agricultural systems, natural farming is now being delivered in increasingly bureaucratic ways by India’s state governments. This article offers Himachal Pradesh as a case study in how the soil is governed, drawing on 38 semi-structured interviews with scientists, agricultural officers, non-governmental organisation leaders, and activists. Rather than assess approaches to soil health according to their ecological bottom line, we examine the differing forms of knowledge, expertise and ‘truth’ in the SHC and Natural Farming approaches. Our analysis reveals discontinuities in how farmers are imagined, as well as continuities in how quasi-spiritual language combines in a bionationalist project, positing assumptions about the correct arrangement of life in nationalist terms. We point to a shift toward hybrid and pick-and-mix approaches to soil health, as farmers and their organisers are increasingly invested with the capacities to combine multiple options. We see a fracturing of expertise and the opening up of epistemic pluralism in responses to the soil fertility crisis

    Final report for DOE Grant No. DE-FG02-07ER64404 - Field Investigations of Microbially Facilitated Calcite Precipitation for Immobilization of Strontium-90 and Other Trace Metals in the Subsurface

    Get PDF
    Subsurface radionuclide and metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOEâÃÂÃÂs greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent ions, such as the short-lived radionuclide 90Sr, is co-precipitation in calcite. We have previously found that that nutrient addition can stimulate microbial ureolytic activity that this activity accelerates calcite precipitation and co-precipitation of Sr, and that higher calcite precipitation rates can result in increased Sr partitioning. We have conducted integrated field, laboratory, and computational research to evaluate the relationships between ureolysis and calcite precipitation rates and trace metal partitioning under environmentally relevant conditions, and investigated the coupling between flow/flux manipulations and precipitate distribution. A field experimental campaign conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO was based on a continuous recirculation design; water extracted from a down-gradient well was amended with urea and molasses (a carbon and electron donor) and re-injected into an up-gradient well. The goal of the recirculation design and simultaneous injection of urea and molasses was to uniformly accelerate the hydrolysis of urea and calcite precipitation over the entire inter-wellbore zone. The urea-molasses recirculation phase lasted, with brief interruptions for geophysical surveys, for 12 days followed by long-term monitoring which continued for 13 months. Following the recirculation phase we found persistent increases in urease activity (as determined from 14C labeled laboratory urea hydrolysis rates) in the upper portion of the inter-wellbore zone. We also observed an initial increase (approximately 2 weeks) in urea concentration associated with injection activities followed by decreasing urea concentration and associated increases in ammonium and dissolved inorganic carbon (DIC) following the termination of injection. Based on the loss of urea and the appearance of ammonium, a first order rate constant for urea hydrolysis of 0.18 day-1 rate with an associate Rf for ammonium of 11 were estimated. This rate constant is approximately 6 times higher than estimated for previous field experiments conducted in eastern Idaho. Additionally, DIC carbon isotope ratios were measured for the groundwater. Injected urea had a ÃÂô13C of 40.7ÃÂñ0.4 âÃÂð compared to background groundwater DIC of ÃÂô13C of -16.6ÃÂñ0.2âÃÂð. Observed decreases in groundwater DIC ÃÂô13C of up to -19.8âÃÂð followed temporal trends similar to those observed for ammonium and suggest that both the increase in ammonium and the sift in ÃÂô13C are the result of urea hydrolysis. Although direct observation of calcite precipitation was not possible because of the high pre-existing calcite content in the site sediments, an observed ÃÂô13C decrease for solid carbonates from sediment samples collect following urea injection (compared to pre-injection values) is likely the result of the incorporation of inorganic carbon derived from urea hydrolysis into newly formed solid carbonates

    Final Technical Report for DOE Award DE-FG02-07ER64403 [Modeling of Microbially Induced Calcite Precipitation for the Immobilization of Strontium-90 Using a Variable Velocity Streamtube Ensemble]

    Full text link
    Biogeochemical modeling using PHREEQC2 and a streamtube ensemble approach is utilized to understand a well-to-well subsurface treatment system at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. Treatment involves in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. Reaction kinetics, equilibrium phases, and cation exchange are used within PHREEQC2 to track pH and levels of calcium, ammonium, urea, and calcite precipitation over time, within a series of one-dimensional advective-dispersive transport paths creating a streamtube ensemble representation of the well-to-well transport. An understanding of the impact of physical heterogeneities within this radial flowfield is critical for remediation design; we address this via the streamtube approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is spatially-variable in a common way, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance in the case of ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized radial non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized “fast-slow-fast” pattern of non-uniform velocity along the streamline. Breakthrough curves produced by each simulation are weighted by the path-respective flux fractions (obtained by deconvolution of tracer tests conducted at the VZRP) to obtain the flux-average of flow contributions to the observation well

    Relaxation time effects on dynamic conductivity of alloyed metallic thin films in the infrared band

    Get PDF
    The behavior of nanoscale infrared antenna elements depends upon the dynamic conductivity of thin metallic films. Spectroscopic ellipsometer measurements of noble metal films show that when the product of the incident radiation frequency and the relaxation time is greater than unity, anomalous dynamic electron transport effects occur. In this regime electron scattering increases the conductivity of alloyed metallic films as demonstrated by ellipsometry measurements of films from the Au-Cu system. A binary alloy thin film was fabricated with equal parts of Au and Cu, and the dynamic conductivity was measured to be 300% larger than the high frequency conductivity of pure Au or pure Cu films at wavelengths in the 3-5 mu m band. When electronic scattering is reduced, ellipsometer measurements of Au and Cu films taken near 4 K demonstrate that the IR conductivity decreases to 20% of the value measured at 300 K at wavelengths in the 3-5 mu m band. Using measured dc relaxation times, a model to explain deviations from Drude behavior was developed using the theory of the anomalous skin effect and frequency dependent relaxation time. This model was in quantitative agreement with the measured data. The ability to design an alloyed metallic thin film using a calculated ideal dc relaxation time to produce the greatest possible dynamic conductivity for infrared antennas and metamaterials was demonstrated

    The social security rights of older international migrants in the European Union

    Get PDF
    Europe is now home to a significant and diverse population of older international migrants. Social and demographic changes have forced the issue of social security in old age onto the European social policy agenda in the last decade. In spite of an increased interest in the financial well-being of older people, many retired international migrants who are legally resident in the European Union face structured disadvantages. Four linked factors are of particular importance in shaping the pension rights and levels of financial provision available to individual older migrants: migration history, socio-legal status, past relationship to the paid labour market, and location within a particular EU Member State. Building on a typology of older migrants, the paper outlines the ways in which policy at both the European Union and Member State levels serves to diminish rather than enhance the social security rights of certain older international migrants

    Impact of different environmental conditions on the aggregation of biogenic U(IV) nanoparticles synthesized by Desulfovibrio alaskensis G20

    Get PDF
    This study investigates the impact of specific environmental conditions on the formation of colloidal U(IV) nanoparticles by the sulfate reducing bacteria (SRB, Desulfovibrio alaskensis G20). The reduction of soluble U(VI) to less soluble U(IV) was quantitatively investigated under growth and non-growth conditions in bicarbonate or 1,4-piperazinediethanesulfonic acid (PIPES) buffered environments. The results showed that under non-growth conditions, the majority of the reduced U nanoparticles aggregated and precipitated out of solution. High resolution transmission electron microscopy revealed that only a very small fraction of cells had reduced U precipitates in the periplasmic spaces in the presence of PIPES buffer, whereas in the presence of bicarbonate buffer, reduced U was also observed in the cytoplasm with greater aggregation of biogenic U(IV) particles at higher initial U(VI) concentrations. The same experiments were repeated under growth conditions using two different electron donors (lactate and pyruvate) and three electron acceptors (sulfate, fumarate, and thiosulfate). In contrast to the results of the non-growth experiments, even after 0.2 mu m filtration, the majority of biogenic U(IV) remained in the aqueous phase resulting in potentially mobile biogenic U(IV) nanoparticles. Size fractionation results showed that U(IV) aggregates were between 18 and 200 nm in diameter, and thus could be very mobile. The findings of this study are helpful to assess the size and potential mobility of reduced U nanoparticles under different environmental conditions, and would provide insights on their potential impact affecting U(VI) bioremediation efforts at subsurface contaminated sites

    Revisiting the analytical solution approach to mixing-limited equilibrium multicomponent reactive transport using mixing ratios: identification of basis, fixing an error, and dealing with multiple minerals

    Get PDF
    Multicomponent reactive transport involves the solution of a system of nonlinear coupled partial differential equations. A number of methods have been developed to simplify the problem. In the case where all reactions are in instantaneous equilibrium and the mineral assemblage is constant in both space and time, de Simoni et al. (2007) provide an analytical solution that separates transport of aqueous components and minerals using scalar dissipation ofPeer ReviewedPostprint (published version
    corecore