41 research outputs found

    Dynamics of mortality rate in population of the Republic of Tatarstan and Finland

    Get PDF
    The analysis of dynamics and regularities of mortality formation in urban and rural population of the Republic of Tatarstan with the account of gender peculiarities is given in the article. In recent years, the mortality rate estimation in all disease classes causes both in rural and urban areas of the Republic of Tatarstan showed significant reduction. The main causes of the population mortality in the Republic of Tatarstan are circulatory diseases, which account from 49.6% to 72.8%. The female population of rural and urban areas has higher mortality rates than the male one due to this cause. The analysis results revealed gender differences in the rank distribution of the major mortality causes: in females, neoplasms are in the second place; injuries, intoxication and some other consequences of external causes (in urban female residents) and respiratory diseases in rural female residents are in the third place. In males, injuries, poisoning and some other consequences of external causes occupy the second place, and tumors - the third place, irrespective of the place of residence. The results of the mortality causes analysis in the population showed the necessity for simultaneous implementation of there policies of non-contagious disease prevention

    Activation of P2X7 Receptors in Peritoneal and Meningeal Mast Cells Detected by Uptake of Organic Dyes: Possible Purinergic Triggers of Neuroinflammation in Meninges

    Get PDF
    Extracellular ATP activates inflammasome and triggers the release of multiple cytokines in various immune cells, a process primarily mediated by P2X7 receptors. However, the expression and functional properties of P2X7 receptors in native mast cells in tissues such as meninges where migraine pain originates from have not been explored. Here we report a novel model of murine cultured meningeal mast cells and using these, as well as easily accessible peritoneal mast cells, studied the mechanisms of ATP-mediated mast cell activation. We show that ATP induced a time and dose-dependent activation of peritoneal mast cells as analyzed by the uptake of organic dye YO-PRO1 as well as 4,6-diamidino-2-phenylindole (DAPI). Both YO-PRO1 and DAPI uptake in mast cells was mediated by the P2X7 subtype of ATP receptors as demonstrated by the inhibitory effect of P2X7 antagonist A839977. Consistent with this, significant YO-PRO1 uptake was promoted by the P2X7 agonist 2',3'-O-(benzoyl-4-benzoyl)-ATP (BzATP). Extracellular ATP-induced degranulation of native and cultured meningeal mast cells was shown with Toluidine Blue staining. Taken together, these data demonstrate the important contribution of P2X7 receptors to ATP-driven activation of mast cells, suggesting these purinergic mechanisms as potential triggers of neuroinflammation and pain sensitization in migraine.Peer reviewe

    Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions

    Get PDF
    © 2016, Springer Science+Business Media Dordrecht.Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca2+ transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain

    Selective Calcium-Dependent Inhibition of ATP-Gated P2X3 Receptors by Bisphosphonate-Induced Endogenous ATP Analog ApppI

    Get PDF
    Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics. Pain is the most unbearable symptom accompanying primary bone cancers and bone metastases. Bone resorptive disorders are often associated with hypercalcemia, contributing to the pathologic process. Nitrogen-containing bisphosphonates (NBPs) are efficiently used to treat bone cancers and metastases. Apart from their toxic effect on cancer cells, NBPs also provide analgesia via poorly understood mechanisms. We previously showed that NBPs, by inhibiting the mevalonate pathway, induced formation of novel ATP analogs such as ApppI [1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) triphosphoric acid diester], which can potentially be involved in NBP analgesia. In this study, we used the patch-clamp technique to explore the action of ApppI on native ATP-gated P2X receptors in rat sensory neurons and rat and human P2X3, P2X2, and P2X7 receptors expressed in human embryonic kidney cells. We found that although ApppI has weak agonist activity, it is a potent inhibitor of P2X3 receptors operating in the nanomolar range. The inhibitory action of ApppI was completely blocked in hypercalcemia-like conditions and was stronger in human than in rat P2X3 receptors. In contrast, P2X2 and P2X7 receptors were insensitive to ApppI, suggesting a high selectivity of ApppI for the P2X3 receptor subtype. NBP, metabolite isopentenyl pyrophosphate, and endogenous AMP did not exert any inhibitory action, indicating that only intact ApppI has inhibitory activity. Ca2+-dependent inhibition was stronger in trigeminal neurons preferentially expressing desensitizing P2X3 subunits than in nodose ganglia neurons, which also express nondesensitizing P2X2 subunits. Altogether, we characterized previously unknown purinergic mechanisms of NBP-induced metabolites and suggest ApppI as the endogenous pain inhibitor contributing to cancer treatment with NBPs

    Pro-nociceptive migraine mediator CGRP provides neuroprotection of sensory, cortical and cerebellar neurons via multi-kinase signaling

    Get PDF
    © 2016, © International Headache Society 2016. Background: Blocking the pro-nociceptive action of CGRP is one of the most promising approaches for migraine prophylaxis. The aim of this study was to explore a role for CGRP as a neuroprotective agent for central and peripheral neurons. Methods: The viability of isolated rat trigeminal, cortical and cerebellar neurons was tested by fluorescence vital assay. Engagement of Nrf2 target genes was analyzed by qPCR. The neuroprotective efficacy of CGRP in vivo was tested in mice using a permanent cerebral ischemia model. Results: CGRP prevented apoptosis induced by the amino acid homocysteine in all three distinct neuronal populations. Using a set of specific kinase inhibitors, we show the role of multi-kinase signaling pathways involving PKA and CaMKII in neuronal survival. Forskolin triggered a very similar signaling cascade, suggesting that cAMP is the main upstream trigger for multi-kinase neuroprotection. The specific CGRP antagonist BIBN4096 reduced cellular viability, lending further support to the proposed neuroprotective function of CGRP. Importantly, CGRP was neuroprotective against permanent ischemia in mice. Conclusion: Our data show an unexpected ‘positive’ role for the endogenous pro-nociceptive migraine mediator CGRP, suggesting more careful examination of migraine prophylaxis strategy based on CGRP antagonism although it should be noted that homocysteine induced apoptosis in primary neuronal cell culture might not necessarily reproduce all the features of cell loss in the living organism

    Cortical spreading depression induces oxidative stress in the trigeminal nociceptive system

    Get PDF
    Indirect evidence suggests the increased production of reactive oxygen species (ROS) in migraine pathophysiology. In the current study we measured lipid peroxidation product in the rat cortex, trigeminal ganglia and meninges after the induction of cortical spreading depression (CSD), a phenomenon known to be associated with migraine aura, and tested nociceptive firing triggered by ROS in trigeminal nerves ex vivo. Application of KCl to dura mater in anesthetized rats induced several waves of CSD recorded by an extracellular electrode in the cortex. Following CSD, samples of cortex (affected regions were identified with blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI)), meninges from left and right hemispheres and trigeminal ganglia were taken for biochemical analysis. We found that CSD increased the level of the lipid peroxidation product malondialdehyde (MDA) in the ipsilateral cerebral cortex and meninges, but also in both ipsi- and contralateral trigeminal ganglia. In order to test the pro-nociceptive action of ROS, we applied the mild oxidant hydrogen peroxide to isolated rat hemiskull preparations including preserved trigeminal innervations. Application of hydrogen peroxide to meninges transiently enhanced electrical spiking activity of trigeminal nerves showing a pro-nociceptive action of ROS. In the presence of hydrogen peroxide trigeminal nerves still responded to capsaicin by burst of spiking activity indicating integrity of neuronal structures. The action of hydrogen peroxide was mediated by TRPA1 receptors as it was abolished by the specific TRPA1 antagonist TCS-5861528. Using dorsal root ganglion sensory neurons as test system we found that hydrogen peroxide promoted the release of the migraine mediator calcitonin gene-related peptide (CGRP), which we previously identified as a trigger of delayed sensitization of trigeminal neurons. Our data suggest that, after CSD, oxidative stress spreads downstream within the trigeminal nociceptive system and could be involved in the coupling of CSD with the activation of trigeminovascular system in migraine pathology. © 2013 IBRO

    Serotonergic mechanisms of trigeminal meningeal nociception: Implications for migraine pain

    Get PDF
    Serotonergic mechanisms play a central role in migraine pathology. However, the region-specific effects of serotonin (5-HT) mediated via multiple types of receptors in the nociceptive system are poorly understood. Using extracellular and patch-clamp recordings, we studied the action of 5-HT on the excitability of peripheral and central terminals of trigeminal afferents. 5-HT evoked long-lasting TTX-sensitive firing in the peripheral terminals of meningeal afferents, the origin site of migraine pain. Cluster analysis revealed that in majority of nociceptive fibers 5-HT induced either transient or persistent spiking activity with prevailing delta and theta rhythms. The 5-HT3-receptor antagonist MDL-72222 or 5-HT1B/D-receptor antagonist GR127935 largely reduced, but their combination completely prevented the excitatory pro-nociceptive action of 5-HT. The 5-HT3 agonist mCPBG activated spikes in MDL-72222-dependent manner but the 5HT-1 receptor agonist sumatriptan did not affect the nociceptive firing. 5-HT also triggered peripheral CGRP release in meninges, which was blocked by MDL-72222.5-HT evoked fast membrane currents and Ca2+ transients in a fraction of trigeminal neurons. Immunohistochemistry showed expression of 5-HT3A receptors in fibers innervating meninges. Endogenous release of 5-HT from degranulated mast cells increased nociceptive firing. Low pH but not histamine strongly activated firing. 5-HT reduced monosynaptic inputs from trigeminal Aδ- and C-afferents to the upper cervical lamina I neurons and this effect was blocked by MDL-72222. Consistent with central inhibitory effect, 5-HT reduced CGRP release in the brainstem slices. In conclusion, 5-HT evokes powerful pro-nociceptive peripheral and anti-nociceptive central effects in trigeminal system transmitting migraine pain.The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The study was supported by the Finnish Academy (grant 277442). AZ was supported by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities and the Government of the Russian Federation (grant No.11.G34.31.0075). The work of IS was supported by RFBR grant 14-04-00885. BVS was supported by the grant from the Fundacao para a Ciencia e a Tecnologia (PTDC/NEU-NMC/1259/2014) and from the programme NORTE 2020

    Neuron-astrocyte transmitophagy is altered in Alzheimer's disease

    Get PDF
    Under physiological conditions in vivo astrocytes internalize and degrade neuronal mitochondria in a process called transmitophagy. Mitophagy is widely reported to be impaired in neurodegeneration but it is unknown whether and how transmitophagy is altered in Alzheimer's disease (AD). Here we report that the internalization of neuronal mitochondria is significantly increased in astrocytes isolated from AD mouse brains. We also demonstrate that the degradation of neuronal mitochondria by astrocytes is increased in AD mice at the age of 6 months onwards. Furthermore, we demonstrate for the first time a similar phenomenon between human neurons and AD astrocytes, and in murine hippocampi in vivo. The results suggest the involvement of S100a4 in impaired mitochondrial transfer between neurons and AD astrocytes together with significant increases in the mitophagy regulator and reactive oxygen species in aged AD astrocytes. These findings demonstrate altered neuronsupporting functions of AD astrocytes and provide a starting point for studying the molecular mechanisms of transmitophagy in AD.Peer reviewe

    Activation of P2X7 Receptors in Peritoneal and Meningeal Mast Cells Detected by Uptake of Organic Dyes: Possible Purinergic Triggers of Neuroinflammation in Meninges

    Get PDF
    Extracellular ATP activates inflammasome and triggers the release of multiple cytokines in various immune cells, a process primarily mediated by P2X7 receptors. However, the expression and functional properties of P2X7 receptors in native mast cells in tissues such as meninges where migraine pain originates from have not been explored. Here we report a novel model of murine cultured meningeal mast cells and using these, as well as easily accessible peritoneal mast cells, studied the mechanisms of ATP-mediated mast cell activation. We show that ATP induced a time and dose-dependent activation of peritoneal mast cells as analyzed by the uptake of organic dye YO-PRO1 as well as 4,6-diamidino-2-phenylindole (DAPI). Both YO-PRO1 and DAPI uptake in mast cells was mediated by the P2X7 subtype of ATP receptors as demonstrated by the inhibitory effect of P2X7 antagonist A839977. Consistent with this, significant YO-PRO1 uptake was promoted by the P2X7 agonist 2′,3′-O-(benzoyl-4-benzoyl)-ATP (BzATP). Extracellular ATP-induced degranulation of native and cultured meningeal mast cells was shown with Toluidine Blue staining. Taken together, these data demonstrate the important contribution of P2X7 receptors to ATP-driven activation of mast cells, suggesting these purinergic mechanisms as potential triggers of neuroinflammation and pain sensitization in migraine

    Dynamics of mortality rate in population of the Republic of Tatarstan and Finland

    No full text
    The analysis of dynamics and regularities of mortality formation in urban and rural population of the Republic of Tatarstan with the account of gender peculiarities is given in the article. In recent years, the mortality rate estimation in all disease classes causes both in rural and urban areas of the Republic of Tatarstan showed significant reduction. The main causes of the population mortality in the Republic of Tatarstan are circulatory diseases, which account from 49.6% to 72.8%. The female population of rural and urban areas has higher mortality rates than the male one due to this cause. The analysis results revealed gender differences in the rank distribution of the major mortality causes: in females, neoplasms are in the second place; injuries, intoxication and some other consequences of external causes (in urban female residents) and respiratory diseases in rural female residents are in the third place. In males, injuries, poisoning and some other consequences of external causes occupy the second place, and tumors - the third place, irrespective of the place of residence. The results of the mortality causes analysis in the population showed the necessity for simultaneous implementation of there policies of non-contagious disease prevention
    corecore