1,317 research outputs found

    Is the Yb2Ti2O7 pyrochlore a quantum spin ice?

    Full text link
    We use numerical linked cluster (NLC) expansions to compute the specific heat, C(T), and entropy, S(T), of a quantum spin ice model of Yb2Ti2O7 using anisotropic exchange interactions recently determined from inelastic neutron scattering measurements and find good agreement with experimental calorimetric data. In the perturbative weak quantum regime, this model has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signalling the paramagnetic to spin ice crossover followed at lower temperature by a sharp peak accompanying a first order phase transition to the ferrimagnetic state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We suggest that conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.Comment: 8 pages (two-column), 9 figure

    Proposal for a [111] Magnetization Plateau in the Spin Liquid State of Tb2Ti2O7

    Full text link
    Despite a Curie-Weiss temperature θCW14\theta_{\rm CW} \sim -14 K, the Tb2Ti2O7 pyrochlore magnetic material lacks long range magnetic order down to at least T50T^*\approx 50 mK. It has recently been proposed that the low temperature collective paramagnetic or spin liquid regime of this material may be akin to a spin ice state subject to both thermal and quantum fluctuations - a {\it quantum spin ice} (QSI) of sorts. Here we explore the effect of a magnetic field B{\bm B} along the [111][111] direction on the QSI state. To do so, we investigate the magnetic properties of a microscopic model of Tb2Ti2O7 in an independent tetrahedron approximation in a finite B{\bm B} along [111][111]. Such a model describes semi-quantitatively the collective paramagnetic regime where nontrivial spin correlations start to develop at the shortest lengthscale, that is over a single tetrahedron, but where no long range order is yet present. Our results show that a magnetization plateau develops at low temperatures as the system develops B=0{\bm B}=0 ferromagnetic spin-ice-like "two-in/two-out" correlations at the shortest lengthscale. From these results, we are led to propose that the observation of such a [111] magnetization plateau in Tb2Ti2O7 would provide compelling evidence for a QSI at B=0{\bm B}=0 in this material and help guide the development of a theory for the origin of its spin liquid state.Comment: 6 pages, 3 figure

    Evidence for gapped spin-wave excitations in the frustrated Gd2Sn2O7 pyrochlore antiferromagnet from low-temperature specific heat measurements

    Full text link
    We have measured the low-temperature specific heat of the geometrically frustrated pyrochlore Heisenberg antiferromagnet Gd2Sn2O7 in zero magnetic field. The specific heat is found to drop exponentially below approximately 350 mK. This provides evidence for a gapped spin-wave spectrum due to an anisotropy resulting from single ion effects and long-range dipolar interactions. The data are well fitted by linear spin-wave theory, ruling out unconventional low energy magnetic excitations in this system, and allowing a determination of the pertinent exchange interactions in this material

    The control of lipid metabolism by mRNA splicing in Drosophila

    Get PDF
    The storage of lipids is an evolutionarily conserved process that is important for the survival of organisms during shifts in nutrient availability. Triglycerides are stored in lipid droplets, but the mechanisms of how lipids are stored in these structures are poorly understood. Previous in vitro RNAi screens have implicated several components of the spliceosome in controlling lipid droplet formation and storage, but the in vivo relevance of these phenotypes is unclear. In this study, we identify specific members of the splicing machinery that are necessary for normal triglyceride storage in the Drosophila fat body. Decreasing the expression of the splicing factors U1-70K, U2AF38, U2AF50 in the fat body resulted in decreased triglyceride levels. Interestingly, while decreasing the SR protein 9G8 in the larval fat body yielded a similar triglyceride phenotype, its knockdown in the adult fat body resulted in a substantial increase in lipid stores. This increase in fat storage is due in part to altered splicing of the gene for the beta-oxidation enzyme CPT1, producing an isoform with less enzymatic activity. Together, these data indicate a role for mRNA splicing in regulating lipid storage in Drosophila and provide a link between the regulation of gene expression and lipid homeostasis

    The Spin Liquid State of the Tb2Ti2O7 Pyrochlore Antiferromagnet: A Puzzling State of Affairs

    Full text link
    The pyrochlore antiferromagnet Tb2Ti2O7 has proven to be an enigma to experimentalists and theorists working on frustrated magnetic systems. The experimentally determined energy level structure suggests a local Ising antiferromagnet at low temperatures, T < 10 K. An appropriate model then predicts a long-range ordered Q = 0 state below approximately 2 K. However, muon spin resonance experiments reveal a paramagnetic structure down to tens of milli-Kelvin. The importance of fluctuations out of the ground state effective Ising doublet has been recently understood, for the measured paramagnetic correlations can not be described without including the higher crystal field states. However, these fluctuations treated within the random phase approximation (RPA) fail to account for the lack of ordering in this system below 2 K. In this work, we briefly review the experimental evidence for the collective paramagnetic state of Tb2Ti2O7. The basic theoretical picture for this system is discussed, where results from classical spin models are used to motivate the investigation of quantum effects to lowest order via the RPA. Avenues for future experimental and theoretical work on Tb2Ti2O7 are presented.Comment: Latex2e,6 pages, IOP format, introduction shortened and other minor corrections, replaced with published version in the Proceedings of the Highly Frustrated Magnetism 2003 Conference, Grenobl

    Understanding Paramagnetic Spin Correlations in the Spin-Liquid Pyrochlore Tb2Ti2O7

    Full text link
    Recent elastic and inelastic neutron scattering studies of the highly frustrated pyrochlore antiferromagnet Tb2Ti2O7 have shown some very intriguing features that cannot be modeled by the local classical Ising model, naively expected to describe this system at low temperatures. Using the random phase approximation to take into account fluctuations between the ground state doublet and the first excited doublet, we successfully describe the elastic neutron scattering pattern and dispersion relations in Tb2Ti2O7, semi-quantitatively consistent with experimental observations.Comment: revtex4, 4 pages, 1 Color+ 2 BW figure
    corecore