12 research outputs found

    Expression and Role of MicroRNAs from the miR-200 Family in the Tumor Formation and Metastatic Propensity of Pancreatic Cancer

    Get PDF
    MicroRNAs from the miR-200 family are commonly associated with the inhibition of the metastatic potential of cancer cells, following inhibition of ZEB transcription factors expression and epithelial-to-mesenchymal transition. However, previous studies performed in pancreatic adenocarcinoma revealed a more complex picture challenging this canonical model. To gain better insights into the role of miR-200 family members in this disease, we analyzed the expression of miR-200a, miR- 200b, miR-200c, miR-141, miR-429, and miR-205, and ZEB1, ZEB2, and CDH1 in pancreatic tumors and matching normal adjacent parenchyma and patient-derived xenografts. We found that miR-200a, miR-429, and miR-205 are frequently overex- pressed in pancreatic tumors, whereas CDH1 is downregulated, and ZEB1 and ZEB2 levels remain unchanged. Furthermore, we measured a positive correlation between miR-200 family mem- bers and CDH1 expression, and a negative correlation between ZEB1 and miR-200c, miR-141, and miR-205 expression, respec- tively. Interestingly, we identified significant changes in expres- sion of epithelial-to-mesenchymal transition regulators and miR-200 members in patient-derived xenografts. Lastly, func- tional studies revealed that miR-141 and miR-429 inhibit the tumorigenic potential of pancreatic cancer cells. Taken together, this comprehensive analysis strongly suggests that miRNAs from the miR-200 family, and in particular miR-429, may act as a tu- mor suppressor gene in pancreatic cancer

    Antiangiogenic effect of gemcitabine following metronomic administration in a pancreas cancer model

    Get PDF
    Gemcitabine shows a marked antitumor effect as a result of its cytotoxic action toward proliferative cells. In this article, we aim to investigate the potential antitumor and antiangiogenic effect of gemcitabine following a metronomic schedule that involves the regular administration of cytotoxic drugs at doses lower than standard treatment. In vitro results showed that human endothelial cells are more sensitive to gemcitabine (IC50 3 nmol/L) than pancreatic tumor cells (IC50 20 nmol/L). For in vivo studies, we used an orthotopic implantation model of human pancreatic carcinoma in nude mice. Gemcitabine was administered i.p. following a low-dose schedule (1 mg/kg/d for a month) and compared with the conventional schedule (100 mg/kg days 0, 3, 6, and 9 postimplantation). Metronomic treatment effect on established tumor was equivalent to standard administration. The measure of CD31 endothelial marked area allowed us to show an in vivo antiangiogenic effect of this drug that was further enhanced by using metronomic administration. This effect correlated with an induction of thrombospondin-1, a natural inhibitor of angiogenesis. Our results allow us to hypothesize that, in addition to a direct antiproliferative or cytotoxic antiendothelial cell effect, a secondary effect involving thrombospondin-1 induction might provide an explanation for the specificity of the effects of metronomic gemcitabine treatment

    Ribonucleoprotein HNRNPA2B1 interacts with and regulates oncogenic KRAS in Pancreatic Ductal Adenocarcinoma Cells.

    Get PDF
    BACKGROUND & AIMS: Development of pancreatic ductal adenocarcinoma (PDAC) involves activation of c-Ki-ras2 Kirsten rat sarcoma oncogene homolog (KRAS) signaling, but little is known about the roles of proteins that regulate the activity of oncogenic KRAS. We investigated the activities of proteins that interact with KRAS in PDAC cells. METHODS: We used mass spectrometry to demonstrate that heterogeneous nuclear ribonucleoproteins (HNRNP) A2 and B1 (encoded by the gene HNRNPA2B1) interact with KRAS G12V. We used co-immunoprecipitation analyses to study interactions between HNRNPA2B1 and KRAS in KRAS-dependent and KRAS-independent PDAC cell lines. We knocked down HNRNPA2B1 using small hairpin RNAs and measured viability, anchorage-independent proliferation, and growth of xenograft tumors in mice. We studied KRAS phosphorylation using the Phos-tag system. RESULTS: We found that interactions between HRNPA2B1 and KRAS correlated with KRAS-dependency of some human PDAC cell lines. Knock down of HNRNPA2B1 significantly reduced viability, anchorage-independent proliferation, and formation of xenograft tumors by KRAS-dependent PDAC cells. HNRNPA2B1 knock down also increased apoptosis of KRAS-dependent PDAC cells, inactivated c-akt murine thymoma oncogene homolog 1 signaling via mammalian target of rapamycin, and reduced interaction between KRAS and phosphatidylinositide 3-kinase. Interaction between HNRNPA2B1 and KRAS required KRAS phosphorylation at serine 181. CONCLUSIONS: In KRAS-dependent PDAC cell lines, HNRNPA2B1 interacts with and regulates the activity of KRAS G12V and G12D. HNRNPA2B1 is required for KRAS activation of c-akt murine thymoma oncogene homolog 1-mammalian target of rapamycin signaling, interaction with phosphatidylinositide 3-kinase, and PDAC cell survival and tumor formation in mice. HNRNPA2B1 might be a target for treatment of pancreatic cancer

    Tumor growth delay by adjuvant alternating electric fields which appears non-thermally mediated

    No full text
    Delivery of the so-called Tumor Treatment Fields (TTFields) has been proposed as a cancer/ntherapy. These are low magnitude alternating electric fields at frequencies from 100 to 300 kHz/nwhich are applied continuously in a non-invasive manner. Electric field delivery may produce an/nincrease in temperature which cannot be neglected. We hypothesized that the reported results/nobtained by applying TTFields in vivo could be due to heat rather than to electrical forces as/npreviously suggested. Here it is presented an in vivo study in which pancreatic tumors/nsubcutaneously implanted in nude mice were treated for a week either with mild hyperthermia/n(41°C) or with TTFields (6 V/cm, 150 kHz) and tumor growth was assessed. Although the TTFields/napplied singly did not produce any significant effect, the combination with chemotherapy did show/na delay in tumor growth in comparison to animals treated only with chemotherapy (median relative/nreduction = 47%). We conclude that concomitant chemotherapy and TTFields delivery show a/nbeneficial impact on pancreatic tumor growth. Contrary to our hypothesis, this impact is nonrelated/nwith the induced temperature increase.This research was supported by project grants (AR00311 - MICINN-TEC2010-11182-E, SAF2012-/n33636, RTICCC RD12/0036/0031) from the Spanish government and in part by a Marie Curie grant/n(IRG 256376) from the European Commission and by the Generalitat de Catalunya (2009 SGR/n1356)

    Tumor growth delay by adjuvant alternating electric fields which appears non-thermally mediated

    No full text
    Delivery of the so-called Tumor Treatment Fields (TTFields) has been proposed as a cancer/ntherapy. These are low magnitude alternating electric fields at frequencies from 100 to 300 kHz/nwhich are applied continuously in a non-invasive manner. Electric field delivery may produce an/nincrease in temperature which cannot be neglected. We hypothesized that the reported results/nobtained by applying TTFields in vivo could be due to heat rather than to electrical forces as/npreviously suggested. Here it is presented an in vivo study in which pancreatic tumors/nsubcutaneously implanted in nude mice were treated for a week either with mild hyperthermia/n(41°C) or with TTFields (6 V/cm, 150 kHz) and tumor growth was assessed. Although the TTFields/napplied singly did not produce any significant effect, the combination with chemotherapy did show/na delay in tumor growth in comparison to animals treated only with chemotherapy (median relative/nreduction = 47%). We conclude that concomitant chemotherapy and TTFields delivery show a/nbeneficial impact on pancreatic tumor growth. Contrary to our hypothesis, this impact is nonrelated/nwith the induced temperature increase.This research was supported by project grants (AR00311 - MICINN-TEC2010-11182-E, SAF2012-/n33636, RTICCC RD12/0036/0031) from the Spanish government and in part by a Marie Curie grant/n(IRG 256376) from the European Commission and by the Generalitat de Catalunya (2009 SGR/n1356)

    Meetronomic chemotherapy following the maximum tolerated dose is an effective anti-tumour therapy affecting angiogenesis, tumour dissemination and cancer stem cells

    No full text
    In this article, the effectiveness of a multi-targeted chemo-switch (C-S) schedule that combines metronomic chemotherapy (MET) after treatment with the maximum tolerated dose (MTD) is reported. This schedule was tested with gemcitabine in two distinct human pancreatic adenocarcinoma orthotopic models and with cyclophosphamide in an orthotopic ovarian cancer model. In both models, the C-S schedule had the most favourable effect, achieving at least 80% tumour growth inhibition without increased toxicity. Moreover, in the pancreatic cancer model, although peritoneal metastases were observed in control and MTD groups, no dissemination was observed in the MET and C-S groups. C-S treatment caused a decrease in angiogenesis, and its effect on tumour growth was similar to that produced by the MTD followed by anti-angiogenic DC101 treatment. C-S treatment combined an increase in thrombospondin-1 expression with a decrease in the number of CD133+ cancer cells and triple-positive CD133+/CD44+/CD24+ cancer stem cells (CSCs). These findings confirm that the C-S schedule is a challenging clinical strategy with demonstrable inhibitory effects on tumour dissemination, angiogenesis and CSCs

    Meetronomic chemotherapy following the maximum tolerated dose is an effective anti-tumour therapy affecting angiogenesis, tumour dissemination and cancer stem cells

    No full text
    In this article, the effectiveness of a multi-targeted chemo-switch (C-S) schedule that combines metronomic chemotherapy (MET) after treatment with the maximum tolerated dose (MTD) is reported. This schedule was tested with gemcitabine in two distinct human pancreatic adenocarcinoma orthotopic models and with cyclophosphamide in an orthotopic ovarian cancer model. In both models, the C-S schedule had the most favourable effect, achieving at least 80% tumour growth inhibition without increased toxicity. Moreover, in the pancreatic cancer model, although peritoneal metastases were observed in control and MTD groups, no dissemination was observed in the MET and C-S groups. C-S treatment caused a decrease in angiogenesis, and its effect on tumour growth was similar to that produced by the MTD followed by anti-angiogenic DC101 treatment. C-S treatment combined an increase in thrombospondin-1 expression with a decrease in the number of CD133+ cancer cells and triple-positive CD133+/CD44+/CD24+ cancer stem cells (CSCs). These findings confirm that the C-S schedule is a challenging clinical strategy with demonstrable inhibitory effects on tumour dissemination, angiogenesis and CSCs

    Antiangiogenic effect of gemcitabine following metronomic administration in a pancreas cancer model

    No full text
    Gemcitabine shows a marked antitumor effect as a result of its cytotoxic action toward proliferative cells. In this article, we aim to investigate the potential antitumor and antiangiogenic effect of gemcitabine following a metronomic schedule that involves the regular administration of cytotoxic drugs at doses lower than standard treatment. In vitro results showed that human endothelial cells are more sensitive to gemcitabine (IC50 3 nmol/L) than pancreatic tumor cells (IC50 20 nmol/L). For in vivo studies, we used an orthotopic implantation model of human pancreatic carcinoma in nude mice. Gemcitabine was administered i.p. following a low-dose schedule (1 mg/kg/d for a month) and compared with the conventional schedule (100 mg/kg days 0, 3, 6, and 9 postimplantation). Metronomic treatment effect on established tumor was equivalent to standard administration. The measure of CD31 endothelial marked area allowed us to show an in vivo antiangiogenic effect of this drug that was further enhanced by using metronomic administration. This effect correlated with an induction of thrombospondin-1, a natural inhibitor of angiogenesis. Our results allow us to hypothesize that, in addition to a direct antiproliferative or cytotoxic antiendothelial cell effect, a secondary effect involving thrombospondin-1 induction might provide an explanation for the specificity of the effects of metronomic gemcitabine treatment

    VCN-01 disrupts pancreatic cancer stroma and exerts antitumor effects

    Get PDF
    Background Pancreatic ductal adenocarcinoma (PDAC) is characterized by dense desmoplastic stroma that limits the delivery of anticancer agents. VCN-01 is an oncolytic adenovirus designed to replicate in cancer cells with a dysfunctional RB1 pathway and express hyaluronidase. Here, we evaluated the mechanism of action of VCN-01 in preclinical models and in patients with pancreatic cancer. Methods VCN-01 replication and antitumor efficacy were evaluated alone and in combination with standard chemotherapy in immunodeficient and immunocompetent preclinical models using intravenous or intratumoral administration. Hyaluronidase activity was evaluated by histochemical staining and by measuring drug delivery into tumors. In a proof-of-concept clinical trial, VCN-01 was administered intratumorally to patients with PDAC at doses up to 1x10(11) viral particles in combination with chemotherapy. Hyaluronidase expression was measured in serum by an ELISA and its activity within tumors by endoscopic ultrasound elastography. Results VCN-01 replicated in PDAC models and exerted antitumor effects which were improved when combined with chemotherapy. Hyaluronidase expression by VCN-01 degraded tumor stroma and facilitated delivery of a variety of therapeutic agents such as chemotherapy and therapeutic antibodies. Clinically, treatment was generally well-tolerated and resulted in disease stabilization of injected lesions. VCN-01 was detected in blood as secondary peaks and in post-treatment tumor biopsies, indicating virus replication. Patients had increasing levels of hyaluronidase in sera over time and decreased tumor stiffness, suggesting stromal disruption. Conclusions VCN-01 is an oncolytic adenovirus with direct antitumor effects and stromal disruption capabilities, representing a new therapeutic agent for cancers with dense stroma
    corecore