32 research outputs found

    Predicted Effects of Neutron Irradiation on GaAs Junction Field Effect Transistors

    No full text

    Low temperature structures of dCpG-proflavine. Conformational and hydration effects.

    Get PDF
    The structure of the complex of dCpG with proflavine was determined using x-ray data taken at -130 degrees C (low temperature) and at -2 degrees C (cold temperature) and compared with the structure of the complex determined previously at room temperature (Shieh, H. S., H. M. Berman, M. Dabrow, and S. Neidle. 1980. Nucleic Acids Res. 8:85-97). Low temperature was refined with 5,125 reflections between 8.0 and 0.93 A, Anisotropically modeled temperature factors were used for DNA/drug atoms and isotropic ones for water oxygens to R factor of 12.2% in P2(1)2(1)2; a = 32.853, b = 21.760, c = 13.296 A. Cold temperature was refined isotropically with 2,846 reflections 8.0-0.89 A to R = 15.1% in P2(1)2(1)2; a = 32.867, b = 22.356, c = 13.461 A. Both structures are very similar to the room temperature one, though some important differences were observed: one guanine sugar moiety is disordered and additional water molecules have been located that give rise to infinite polyhedral hydration networks

    Substrate Binding Induces Conformational Changes in a Class A β‑lactamase That Prime It for Catalysis

    No full text
    The emergence and dissemination of bacterial resistance to β-lactam antibiotics via β-lactamase enzymes is a serious problem in clinical settings, often leaving few treatment options for infections resulting from multidrug-resistant superbugs. Understanding the catalytic mechanism of β-lactamases is important for developing strategies to overcome resistance. Binding of a substrate in the active site of an enzyme can alter the conformations and p<i>K</i><sub>a</sub>s of catalytic residues, thereby contributing to enzyme catalysis. Here we report X-ray and neutron crystal structures of the class A Toho-1 β-lactamase in the apo form and an X-ray structure of a Michaelis-like complex with the cephalosporin antibiotic cefotaxime in the active site. Comparison of these structures reveals that substrate binding induces a series of changes. The side chains of conserved residues important in catalysis, Lys73 and Tyr105, and the main chain of Ser130 alter their conformations, with Nζ of Lys73 moving closer to the position of the conserved catalytic nucleophile Ser70. This movement of Lys73 closer to Ser70 is consistent with proton transfer between the two residues prior to acylation. In combination with the tightly bound catalytic water molecule located between Glu166 and the position of Ser70, the enzyme is primed for catalysis when Ser70 is activated for nucleophilic attack of the β-lactam ring. Quantum mechanical/molecular mechanical (QM/MM) free energy simulations of models of the wild-type enzyme show that proton transfer from the Nζ of Lys73 to the Oε2 atom of Glu166 is more thermodynamically favorable than when it is absent. Taken together, our findings indicate that substrate binding enhances the favorability of the initial proton transfer steps that precede the formation of the acyl-enzyme intermediate
    corecore