140 research outputs found

    RP-LC and HPTLC Methods for the Determination of Olmesartan Medoxomil and Hydrochlorothiazide in Combined Tablet Dosage Forms

    Get PDF
    Two new, rapid, precise, accurate and specific chromatographic methods were described for the simultaneous determination of olmesartan medoxomil and hydrochlorothiazide in combined tablet dosage forms. The first method was based on reversed phase liquid chromatography using an Eurosphere 100 RP C18 column (250 × 4.6 mm ID, 5 μm). The mobile phase was methanol–0.05% o-phosphoric acid (60:40 v/v) at a flow rate of 1.0 mL min−1. Commercially available tablets and laboratory mixtures containing both drugs were assayed and detected using a UV detector at 270 nm. The second method involved silica gel 60 F254 high performance thin layer chromatography and densitometric detection at 254 nm using acetonitrile–ethyl acetate–glacial acid (7:3:0.4 v/v/v) as the mobile phase. Calibration curves ranged between 200–600 and 125–375 ng spot−1 for olmesartan and hydrochlorothiazide, respectively

    An enterprise engineering approach for the alignment of business and information technology strategy

    Full text link
    Information systems and information technology (IS/IT, hereafter just IT) strategies usually depend on a business strategy. The alignment of both strategies improves their strategic plans. From an external perspective, business and IT alignment is the extent to which the IT strategy enables and drives the business strategy. This article reviews strategic alignment between business and IT, and proposes the use of enterprise engineering (EE) to achieve this alignment. The EE approach facilitates the definition of a formal dialog in the alignment design. In relation to this, new building blocks and life-cycle phases have been defined for their use in an enterprise architecture context. This proposal has been adopted in a critical process of a ceramic tile company for the purpose of aligning a strategic business plan and IT strategy, which are essential to support this process. © 2011 Taylor & Francis.Cuenca, L.; Boza, A.; Ortiz, A. (2011). An enterprise engineering approach for the alignment of business and information technology strategy. International Journal of Computer Integrated Manufacturing. 24(11):974-992. https://doi.org/10.1080/0951192X.2011.579172S9749922411(1993). CIMOSA: Open System Architecture for CIM. doi:10.1007/978-3-642-58064-2Ang, J., Shaw, N., & Pavri, F. (1995). Identifying strategic management information systems planning parameters using case studies. International Journal of Information Management, 15(6), 463-474. doi:10.1016/0268-4012(95)00049-dAvison, D., Jones, J., Powell, P., & Wilson, D. (2004). Using and validating the strategic alignment model. The Journal of Strategic Information Systems, 13(3), 223-246. doi:10.1016/j.jsis.2004.08.002Avgerou, & McGrath. (2007). Power, Rationality, and the Art of Living through Socio-Technical Change. MIS Quarterly, 31(2), 295. doi:10.2307/25148792Bergeron, F., Raymond, L., & Rivard, S. (2004). Ideal patterns of strategic alignment and business performance. Information & Management, 41(8), 1003-1020. doi:10.1016/j.im.2003.10.004Bernus, P., Nemes, L., & Schmidt, G. (Eds.). (2003). Handbook on Enterprise Architecture. doi:10.1007/978-3-540-24744-9Bleistein, S. J., Cox, K., Verner, J., & Phalp, K. T. (2006). B-SCP: A requirements analysis framework for validating strategic alignment of organizational IT based on strategy, context, and process. Information and Software Technology, 48(9), 846-868. doi:10.1016/j.infsof.2005.12.001Buchanan, S., & Gibb, F. (1998). The information audit: An integrated strategic approach. International Journal of Information Management, 18(1), 29-47. doi:10.1016/s0268-4012(97)00038-8Buchanan, S., & Gibb, F. (2007). The information audit: Role and scope. International Journal of Information Management, 27(3), 159-172. doi:10.1016/j.ijinfomgt.2007.01.002Chen, D., & Vernadat, F. (2004). Standards on enterprise integration and engineering—state of the art. International Journal of Computer Integrated Manufacturing, 17(3), 235-253. doi:10.1080/09511920310001607087Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and interoperability: Past, present and future. Computers in Industry, 59(7), 647-659. doi:10.1016/j.compind.2007.12.016Chen, H.-M., Kazman, R., & Garg, A. (2005). BITAM: An engineering-principled method for managing misalignments between business and IT architectures. Science of Computer Programming, 57(1), 5-26. doi:10.1016/j.scico.2004.10.002Cuenca, L., Ortiz, A., & Vernadat, F. (2006). From UML or DFD models to CIMOSA partial models and enterprise components. International Journal of Computer Integrated Manufacturing, 19(3), 248-263. doi:10.1080/03081070500065841Davis, G. B. (2000). Information Systems Conceptual Foundations: Looking Backward and Forward. IFIP Advances in Information and Communication Technology, 61-82. doi:10.1007/978-0-387-35505-4_5Gindy, N., Morcos, M., Cerit, B., & Hodgson, A. (2008). Strategic technology alignment roadmapping STAR® aligning R&D investments with business needs. International Journal of Computer Integrated Manufacturing, 21(8), 957-970. doi:10.1080/09511920801927148Goethals, F. G., Lemahieu, W., Snoeck, M., & Vandenbulcke, J. A. (2007). The data building blocks of the enterprise architect. Future Generation Computer Systems, 23(2), 269-274. doi:10.1016/j.future.2006.05.004Greefhorst, D., Koning, H., & Vliet, H. van. (2006). The many faces of architectural descriptions. Information Systems Frontiers, 8(2), 103-113. doi:10.1007/s10796-006-7975-xGregor, S., Hart, D., & Martin, N. (2007). Enterprise architectures: enablers of business strategy and IS/IT alignment in government. Information Technology & People, 20(2), 96-120. doi:10.1108/09593840710758031Hartono, E., Lederer, A. L., Sethi, V., & Zhuang, Y. (2003). Key predictors of the implementation of strategic information systems plans. ACM SIGMIS Database, 34(3), 41-53. doi:10.1145/937742.937747Henderson, J. C., & Venkatraman, H. (1993). Strategic alignment: Leveraging information technology for transforming organizations. IBM Systems Journal, 32(1), 472-484. doi:10.1147/sj.382.0472Hirschheim, R., & Sabherwal, R. (2001). Detours in the Path toward Strategic Information Systems Alignment. California Management Review, 44(1), 87-108. doi:10.2307/41166112Hoogervorst, J. A. P. (2009). Enterprise Governance and Enterprise Engineering. doi:10.1007/978-3-540-92671-9Johnson, A. M., & Lederer, A. L. (2010). CEO/CIO mutual understanding, strategic alignment, and the contribution of IS to the organization. Information & Management, 47(3), 138-149. doi:10.1016/j.im.2010.01.002JONKERS, H., LANKHORST, M., VAN BUUREN, R., HOPPENBROUWERS, S., BONSANGUE, M., & VAN DER TORRE, L. (2004). CONCEPTS FOR MODELING ENTERPRISE ARCHITECTURES. International Journal of Cooperative Information Systems, 13(03), 257-287. doi:10.1142/s0218843004000985King, W. R. (1978). Strategic Planning for Management Information Systems. MIS Quarterly, 2(1), 27. doi:10.2307/249104Leonard, J. (2007). Sharing a Vision: comparing business and IS managers’ perceptions of strategic alignment issues. Australasian Journal of Information Systems, 15(1). doi:10.3127/ajis.v15i1.299Luftman, J. N., Lewis, P. R., & Oldach, S. H. (1993). Transforming the enterprise: The alignment of business and information technology strategies. IBM Systems Journal, 32(1), 198-221. doi:10.1147/sj.321.0198Luftman, J., Ben-Zvi, T., Dwivedi, R., & Rigoni, E. H. (2010). IT Governance. International Journal of IT/Business Alignment and Governance, 1(2), 13-25. doi:10.4018/jitbag.2010040102Melville, Kraemer, & Gurbaxani. (2004). Review: Information Technology and Organizational Performance: An Integrative Model of IT Business Value. MIS Quarterly, 28(2), 283. doi:10.2307/25148636Newkirk, H. E., & Lederer, A. L. (2006). Incremental and Comprehensive Strategic Information Systems Planning in an Uncertain Environment. IEEE Transactions on Engineering Management, 53(3), 380-394. doi:10.1109/tem.2006.877446Noran, O. (2003). An analysis of the Zachman framework for enterprise architecture from the GERAM perspective. Annual Reviews in Control, 27(2), 163-183. doi:10.1016/j.arcontrol.2003.09.002Noran, O. (2005). A systematic evaluation of the C4ISR AF using ISO15704 Annex A (GERAM). Computers in Industry, 56(5), 407-427. doi:10.1016/j.compind.2004.12.005Ortiz, A., Lario, F., & Ros, L. (1999). Enterprise Integration—Business Processes Integrated Management: a proposal for a methodology to develop Enterprise Integration Programs. Computers in Industry, 40(2-3), 155-171. doi:10.1016/s0166-3615(99)00021-4Panetto, H., Baïna, S., & Morel, G. (2007). Mapping the IEC 62264 models onto the Zachman framework for analysing products information traceability: a case study. Journal of Intelligent Manufacturing, 18(6), 679-698. doi:10.1007/s10845-007-0040-xPapp, R. (Ed.). (2001). Strategic Information Technology. doi:10.4018/978-1-87828-987-2Peñaranda, N., Mejía, R., Romero, D., & Molina, A. (2010). Implementation of product lifecycle management tools using enterprise integration engineering and action-research. International Journal of Computer Integrated Manufacturing, 23(10), 853-875. doi:10.1080/0951192x.2010.495136Reich, B. H., & Benbasat, I. (2000). Factors That Influence the Social Dimension of Alignment between Business and Information Technology Objectives. MIS Quarterly, 24(1), 81. doi:10.2307/3250980Sledgianowski, D., & Luftman, J. (2005). IT-Business Strategic Alignment Maturity. Journal of Cases on Information Technology, 7(2), 102-120. doi:10.4018/jcit.2005040107Sowa, J. F., & Zachman, J. A. (1992). Extending and formalizing the framework for information systems architecture. IBM Systems Journal, 31(3), 590-616. doi:10.1147/sj.313.0590Van Grembergen, W., & De Haes, S. (2010). A Research Journey into Enterprise Governance of IT, Business/IT Alignment and Value Creation. International Journal of IT/Business Alignment and Governance, 1(1), 1-13. doi:10.4018/jitbag.2010120401Xueying Wang, Xiongwei Zhou, & Longbin Jiang. (2008). A method of business and IT alignment based on Enterprise Architecture. 2008 IEEE International Conference on Service Operations and Logistics, and Informatics. doi:10.1109/soli.2008.468649

    Scenario-driven roadmapping for technology foresight

    Get PDF
    This paper presents a novel method for using scenarios for technology foresight. Technology foresight is a well-established discipline, practised with popular foresight methods such as roadmapping and scenario planning. Applying each foresight method reveals limitations in practice, some of which can be addressed by combining methods. Following calls for combining foresight methods, and past attempts to integrate scenario planning and technology roadmapping, we propose a novel method for their combination. The resulting method — ‘scenario-driven roadmapping’ differs in: i) using scenario planning first to identify plausible images of the general environment and then using the scenarios for technology roadmapping; and ii) taking advantage of ‘flex points’ – critical developments which would signal transitions along particular pathways – to create a ‘radar’ to support effective monitoring of the environment over time. This new combined method takes advantage of the strengths of both methods, while addressing their limitations. A case study vignette centred on the work of a special interest group for Radio Frequency IDentification (RFID) technology adoption in the English National Health Service is presented to illustrate and reflect upon the use in practice of the ‘scenario-driven roadmapping’ method. Participants were able to develop a detailed technology roadmap with clear ‘flex points’ helping to connect present circumstances with pathways towards future scenarios. We report on how participants engaged with the scenario-driven method and outcomes achieved were recorded

    RP-HPLC with Time Programmed Fluorescence Detection for Quantitation of Avanafil and Dapoxetine Hydrochloride; Application to Pharmaceutical Dosage Form and Biological Fluid

    No full text
    Avanafil (AVN) was recently co-formulated with dapoxetine HCl (DAP) for treatment of erectile dysfunction and premature ejaculation. Sensitive and simple reversed-phase (RP) high-performance liquid chromatographic method (HPLC) was developed and validated for their simultaneous determination using tadalafil (TAD) as an internal standard. Isocratic separation was achieved within run time of only 7.0 min on Eclipse C18 column (150 mm × 4.6 mm, 5 µm particle size) using a mobile phase composed of acetonitrile: 0.15% triethylamine (40:60, v/v) at pH = 4.0 adjusted with o-phosphoric acid. The analysis was performed at a flow rate of 1.0 mL/min with fluorescence detection at 236/370 nm for AVN, 236/410 nm for DAP, and 236/330 for TAD using time programming. The analytes were determined by their native fluorescence and the response was linear over concentration ranges of 0.05–40 and 0.01–30 µg/mL for AVN and DAP, respectively, with limits of detection of 0.043 and 0.007 µg/mL in a respective order. The developed method successfully determined AVN and DAP in bulk powder, tablets, and spiked human plasma

    Validated methods for determination of yohimbine hydrochloride in the presence of its degradation products

    Get PDF
    Two simple, accurate and sensitive and techniques have been developed and validated for the determination of yohimbine hydrochloride in presence of its acid, alkaline and photo-degradates as stability-indicating studies. First spectrophotometric technique was adopted for the determination of the investigated drug in presence of degradation products, by the use of derivative and derivative ratio methods, respectively, while the second technique utilized a high-performance liquid chromatography for the determination of yohimbine hydrochloride in presence of its degradation products, as stability indicating method. The chromatographic separation was achieved isocratically by using a mobile phase of water and methanol in a ratio of 55:45 V/V containing 0.5% triethylamine. The analysis was carried out using C18 (4.6 × 150 mm, 5 μm) at flow rate of 1.0 ml/min and UV detection at 270 nm. All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines and successfully applied for determination of the drug in pure form, in laboratory prepared mixtures and in pharmaceutical preparations. The obtained results were statistically compared to the official method of analysis for yohimbine hydrochloride and no significant differences were found

    Irrigation water requirements as affected by diverse climate conditions

    No full text
    Determination of crop water requirement is one of the key parameters for precise irrigation scheduling, especially under limited water resources, such as in Egypt. Hence, an accurate estimation of reference evapotranspiration (ETo) is a vital factor for agriculture production, therefore the objectives of the present study were to study the influence of climate change on different seasons and comparing of ETo estimations using Blany- Criddle (BC) and FAO-56 Penman-Monteith (PM) equations under present and future climatic conditions. Data on the present climate have been collected from Wadi El-Natrun meteorological station, Egypt from 1991 to 2020. While the future climate data have been chosen for the concerned RCPs scenarios: RCP2.6, RCP4.5, RCP6.0, and RCP8.5 in 2040, 2060, 2080, and 2100. The results revealed that all months’ reordered Tmean above 20 oC, except December, January, and February where they ranged between 17.68 and 19.44 oC.  The highest Tmean values were observed in July (32.3oC), August (31.9 oC), and June (31.8 oC), while February scored the lowest Tmean (17.7 oC).&nbsp
    • …
    corecore