40 research outputs found

    Chemical Magnetoreception: Bird Cryptochrome 1a Is Excited by Blue Light and Forms Long-Lived Radical-Pairs

    Get PDF
    Cryptochromes (Cry) have been suggested to form the basis of light-dependent magnetic compass orientation in birds. However, to function as magnetic compass sensors, the cryptochromes of migratory birds must possess a number of key biophysical characteristics. Most importantly, absorption of blue light must produce radical pairs with lifetimes longer than about a microsecond. Cryptochrome 1a (gwCry1a) and the photolyase-homology-region of Cry1 (gwCry1-PHR) from the migratory garden warbler were recombinantly expressed and purified from a baculovirus/Sf9 cell expression system. Transient absorption measurements show that these flavoproteins are indeed excited by light in the blue spectral range leading to the formation of radicals with millisecond lifetimes. These biophysical characteristics suggest that gwCry1a is ideally suited as a primary light-mediated, radical-pair-based magnetic compass receptor

    Spectroscopic Studies of Phycobilisome Subcore Preparations Lacking Key Core Chromophores: Assignment of Excited State Energies to the Lcm, Β18 and Αap-B Chromophores

    No full text
    Chromophore absorption and emission characteristics of the αAP-B, β18 and Lcm (large core-membrane linker) chromopeptides within the phycobilisome core are investigated using genetically engineered strains of Synechococcus sp. PCC 7002. Steady-state and time-resolved emission were used to examine energy transfer in subcore preparations from the wild-type organism and two mutants. Low-temperature (77 K) emission spectra were also measured for intact phycobilisomes from the wild-type and five mutant strains. Mutants retaining either the αAP-B subunit or the unaltered Lcm chromophore resulted in only small changes in the low-temperature emission spectra, while retention of only the β18 subunit resulted in blue-shifted emission spectra. The Lcm chromophore has a room-temperature absorption maximum at 675 nm. In phycobilisomes at 77 K the αAP-B and Lcm chromophores emit at 682-683 nm, and they are the best candidates for long-wavelength emitters also at room temperature. Overlap of these emission spectra with the absorption of chlorophyll a in the associated thylakoid membrane plays a significant role in excitation transfer from the antenna complexes in cyanobacteria

    Core Mutations of Synechococcus Sp. PCC 7002 Phycobilisomes: A Spectroscopic Study

    No full text
    Three cyanobacterial strains harboring mutations affecting phycobilisome (PBS) cores were studied using steady state absorption and fluorescence and time-resolved fluorescence. The apcF mutant, missing β18, and the apcDF mutant, missing both αAPB and β18P, showed only small spectroscopic differences from the wild-type strain; their PBS emission was blue shifted by 10 nm, whereas their absorption spectra and time-resolved fluorescence kinetics were virtually unchanged. The third mutant studied was the apcE/C186S mutant in which the chromophore-binding cysteine-186 in the L99 CM polypeptide has been substituted with serine. The apcE/C186S mutant contained a modified chromophore which significantly changed the spectroscopic properties of the PBS complex. The apcE/C186S PBS absorbed more than the wild-type strain at 705 nm, and the emission spectrum gave two peaks at 660 nm and 715 nm. The time-resolved kinetics of the apcE/C186S mutant PBS were also significantly altered from those of the wild-type strain

    A Modular Laser Apparatus for Polarimetry, Nephelometry, and Fluorimetry in General Chemistry

    No full text
    An introduction to lasers as early as a general chemistry course can be of great advantage to both major and non major students in chemistry, but often cost and other practical considerations prevent widespread use of lasers. A versatile laser apparatus suitable for the undergraduate teaching laboratory that may serve as polarimeter, nephelometer, or fluorimeter is described

    A Modular Laser Apparatus for Polarimetry Nephelometry, and Fluorimetry in General Chemistry

    No full text
    An introduction to lasers as early as a general chemistry course can be of great advantage to both major and non major students in chemistry, but often cost and other practical considerations prevent widespread use of lasers. A versatile laser apparatus suitable for the undergraduate teaching laboratory that may serve as polarimeter, nephelometer, or fluorimeter is described

    Evidence for Concerted Electron Proton Transfer in Charge Recombination Between FADH- and 306Trp• in Escherichia Coli Photolyase

    No full text
    Proton-coupled electron-transfer (PCET) is a mechanism of great importance in protein electron transfer and enzyme catalysis, and the involvement of aromatic amino acids in this process is of much interest. The DNA repair enzyme photolyase provides a natural system that allows for the study of PCET using a neutral radical tryptophan (Trp•). In Escherichia coli photolyase, photoreduction of the flavin adenine dinucleotide (FAD) cofactor in its neutral radical semiquinone form (FADH•) results in the formation of FADH- and 306Trp•. Charge recombination between these two intermediates requires the uptake of a proton by 306Trp•. The rate constant of charge recombination has been measured as a function of temperature in the pH range from 5.5 to 10.0, and the data are analyzed with both classical Marcus and semi-classical Hopfield electron transfer theory. The reorganization energy associated with the charge recombination process shows a pH dependence ranging from 2.3 eV at pH ? 7 and 1.2 eV at pH(D) 10.0. These findings indicate that at least two mechanisms are involved in the charge recombination reaction. Global analysis of the data supports the hypothesis that PCET during charge recombination can follow two different mechanisms with an apparent switch around pH 6.5. At lower pH, concerted electron proton transfer (CEPT) is the favorable mechanism with a reorganization energy of 2.1-2.3 eV. At higher pH, a sequential mechanism becomes dominant with rate-limiting electron-transfer followed by proton uptake which has a reorganization energy of 1.0-1.3 eV. The observed ?inverse? deuterium isotope effect at pH \u3c 8 can be explained by a solvent isotope effect that affects the free energy change of the reaction and masks the normal, mass-related kinetic isotope effect that is expected for a CEPT mechanism. To the best of our knowledge, this is the first time that a switch in PCET mechanism has been observed in a protein

    Evidence from Thermodynamics that DNA Photolyase Recognizes a Solvent-Exposed CPD Lesion

    No full text
    Binding of a cis,syn-cyclobutane pyrimidine dimer (CPD) to Escherichia coli DNA photolyase was examined as a function of temperature, enzyme oxidation state, salt, and substrate conformation using isothermal titration calorimetry. While the overall ΔG° of binding was relatively insensitive to most of the conditions examined, the enthalpic and entropic terms that make up the free energy of binding are sensitive to the conditions of the experiment. Substrate binding to DNA photolyase is generally driven by a negative change in enthalpy. Electrostatic interactions and protonation are affected by the oxidation state of the required FAD cofactor and substrate conformation. The fully reduced enzyme appears to bind approximately two additional water molecules as part of substrate binding. More significantly, the experimental change in heat capacity strongly suggests that the CPD lesion must be flipped out of the intrahelical base stacking prior to binding to the protein; the DNA repair enzyme appears to recognize a solvent-exposed CPD as part of its damage recognition mechanism

    Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries

    No full text
    Nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA-PSU-PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration
    corecore