156 research outputs found

    Qualitative analysis of small (≤2 cm) regenerative nodules, dysplastic nodules and well-differentiated HCCs with gadoxetic acid MRI

    Get PDF
    BACKGROUND\textbf{BACKGROUND}: The characterization of small lesions in cirrhotic patients is extremely difficult due to the overlap of imaging features among different entities in the step-way of the hepatocarcinogenesis. The aim of our study was to evaluate the role of gadoxetic-acid MRI in the differentiation of small (≤2 cm) well-differentiated hepatocellular carcinomas from regenerative and dysplastic nodules. METHODS\textbf{METHODS}: Seventy-three cirrhotic patients, with 118 focal liver lesions (≤2 cm) were prospectively recruited. MRI examination was performed with a 3T magnet and the study protocol included T1 - and T2-weighted pre-contrast sequences and T1 -weighted gadoxetic-acid enhanced post-contrast sequences obtained during the arterial, venous, late dynamic and hepatobiliary phases. All lesions were pathologically confirmed. Two radiologists blinded to clinical and pathological information evaluated two imaging datasets; another radiologist analysed the signal intensity characteristics of each lesion. Sensitivity, specificity and diagnostic accuracy were considered for statistical analysis. RESULTS\textbf{RESULTS}: Good agreement was reported between the two readers (κ 0.70). Both readers reported a significantly improved sensitivity (57.7 and 66.2 vs 74.6 and 83.1) and diagnostic accuracy (0.717 and 0.778 vs 0.843 and 0.901) with the adjunction of the hepatobiliary phase 57.7 vs 74.6 and 66.2 vs 83.1 (p ≤ 0.04). CONCLUSIONS\textbf{CONCLUSIONS}: Gadoxetic-acid MRI is a reliable tool for the characterization of HCC and lesions at high risk to further develop

    Alpha-SMA expression in hepatic stellate cells and quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent chronic hepatitis after liver transplantation

    Get PDF
    Background. The alpha isotype of actin expressed by hepatic stellate cells reflects their activation to myofibroblast-like cell and has been directly related to experimental liver fibrogenesis, and indirectly to human fibrosis in chronic liver disease. Aims. To evaluate the changes in distribution and percentage of alpha-smooth muscle actin-positive hepatic stellate cells and the correlation with the degree of the fibrosis in cirrhotic livers, as well as in patients with recurrent HCV chronic hepatitis after liver transplantation. Methods. Human liver biopsies were divided in four groups: (1) normal livers obtained from cadaveric liver donors (n = 35), (2) cirrhosis post-HBV hepatitis (n = 11), (3) cirrhosis post-HCV hepatitis (n = 10), and (4) post-transplant recurrent HCV chronic hepatitis (n = 13). Samples were stained with anti-alpha-smooth muscle actin antibody by immunoperoxidase method and semi-quantitatively evaluated. Liver fibrosis was assessed from specimens stained with Masson's trichrome and quantified by computer image analysis. Results. The percentage of alpha-smooth muscle actin-positive hepatic stellate cells was significantly higher in the HBV cirrhosis, HCV cirrhosis and post-transplant HCV recurrent hepatitis groups (36.1 +/- 15.2, 23.8 +/- 19.7 and 27.8 +/- 16.4%, respectively) compared to the liver donor group (2.9 +/- 4.0%). The alpha-smooth muscle actin-positive hepatic stellate cells to fibrous tissue ratio were significantly higher in the post-transplant recurrent HCV hepatitis group (2.36 +/- 1.12) compared to both the donor livers and the HCV cirrhosis groups (0.74 +/- 1.09 and 1.03 +/- 0.91, respectively). The alpha-smooth muscle actin-positive hepatic stellate cell percentage and fibrosis correlated positively in the post-transplant recurrent HCV hepatitis group and negatively in the HCV cirrhosis group. No difference in the immunohistochemical and morphometrical variables was found between the HCV cirrhosis and HBV cirrhosis groups. Conclusions. These results indirectly confirm that, in vivo, alpha-smooth muscle actin expression is a reliable marker of hepatic stellate cells activation which precedes fibrous tissue deposition even in the setting of recurrent HCV chronic hepatitis after liver transplantation, and it could be useful to identify the earliest stages of hepatic fibrosis and monitoring the efficacy of the therapy. In the presence of advanced cirrhosis other factors, rather than alpha-smooth muscle actin-positive hepatic stellate cells, may sustain fibrosis deposition. (c) 2005 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved

    MuRF-1 and p-GSK3β expression in muscle atrophy of liver cirrhosis

    Get PDF
    Background: Chronic diseases, including cirrhosis, are often accompanied by protein-energy malnutrition and muscle loss, which in turn negatively affect quality of life, morbidity and mortality. Unlike other chronic conditions, few data are available on the molecular mechanisms underlying muscle wasting in this clinical setting. Aims: To assess mechanisms of muscle atrophy in patients with cirrhosis. Methods: Nutritional [subjective global assessment (SGA) and anthropometry] and metabolic assessment was performed in 30 cirrhotic patients awaiting liver transplantation. Rectus abdominis biopsies were obtained intraoperatively in 22 cirrhotic patients and in 10 well-nourished subjects undergoing elective surgery for non-neoplastic disease, as a control group. Total RNA was extracted and mRNA for atrogenes (MuRF-1, Atrogin-1/MAFbx), myostatin (MSTN), GSK3β and IGF-1 was assayed. Results: A total of 50% of cirrhotic patients were malnourished based on SGA, while 53% were muscle-depleted according to mid-arm muscle area (MAMA<5th percentile). MuRF-1 RNA expression was significantly increased in malnourished cirrhotic patients (SGA-B/C) vs. well-nourished patients (SGA-A) (P = 0.01). The phosphorylation of GSK3β was up-regulated in cirrhotic patients with hepatocellular carcinoma (HCC) vs. patients without tumour (P < 0.05). Conclusions: Muscle loss is frequently found in end-stage liver disease patients. Molecular factors pertaining to signalling pathways known to be involved in the regulation of muscle mass are altered during cirrhosis and HCC. © 2013 John Wiley & Sons A/S

    Severity of Hepatocyte Damage and Prognosis in Cirrhotic Patients Correlate with Hepatocyte Magnesium Depletion

    Get PDF
    We aimed to evaluate the magnesium content in human cirrhotic liver and its correlation with serum AST levels, expression of hepatocellular injury, and MELDNa prognostic score. In liver biopsies obtained at liver transplantation, we measured the magnesium content in liver tissue in 27 cirrhotic patients (CIRs) and 16 deceased donors with healthy liver (CTRLs) by atomic absorption spectrometry and within hepatocytes of 15 CIRs using synchrotron-based X-ray fluorescence microscopy. In 31 CIRs and 10 CTRLs, we evaluated the immunohistochemical expression in hepatocytes of the transient receptor potential melastatin 7 (TRPM7), a magnesium influx chanzyme also involved in inflammation. CIRs showed a lower hepatic magnesium content (117.2 (IQR 110.5-132.9) vs. 162.8 (IQR 155.9-169.8) mu g/g; p &lt; 0.001) and a higher percentage of TRPM7 positive hepatocytes (53.0 (IQR 36.8-62.0) vs. 20.7 (10.7-32.8)%; p &lt; 0.001) than CTRLs. In CIRs, MELDNa and serum AST at transplant correlated: (a) inversely with the magnesium content both in liver tissue and hepatocytes; and (b) directly with the percentage of hepatocytes stained intensely for TRPM7. The latter also directly correlated with the worsening of MELDNa at transplant compared to waitlisting. Magnesium depletion and overexpression of its influx chanzyme TRPM7 in hepatocytes are associated with severity of hepatocyte injury and prognosis in cirrhosis. These data represent the pathophysiological basis for a possible beneficial effect of magnesium supplementation in cirrhotic patients

    The Italian data on SARS-CoV-2 infection in transplanted patients support an organ specific immune response in liver recipients

    Get PDF
    Introduction: The study of immune response to SARSCoV-2 infection in different solid organ transplant settings represents an opportunity for clarifying the interplay between SARS-CoV-2 and the immune system. In our nationwide registry study from Italy, we specifically evaluated, during the first wave pandemic, i.e., in non-vaccinated patients, COVID-19 prevalence of infection, mortality, and lethality in liver transplant recipients (LTRs), using non-liver solid transplant recipients (NL-SOTRs) and the Italian general population (GP) as comparators. Methods: Case collection started from February 21 to June 22, 2020, using the data from the National Institute of Health and National Transplant Center, whereas the data analysis was performed on September 30, 2020.To compare the sex- and age-adjusted distribution of infection, mortality, and lethality in LTRs, NL-SOTRs, and Italian GP we applied an indirect standardization method to determine the standardized rate. Results: Among the 43,983 Italian SOTRs with a functioning graft, LTRs accounted for 14,168 patients, of whom 89 were SARS-CoV-2 infected. In the 29,815 NL-SOTRs, 361 cases of SARS-CoV-2 infection were observed. The geographical distribution of the disease was highly variable across the different Italian regions. The standardized rate of infection, mortality, and lethality rates in LTRs resulted lower compared to NL-SOTRs [1.02 (95%CI 0.81-1.23) vs. 2.01 (95%CI 1.8-2.2); 1.0 (95%CI 0.5-1.5) vs. 4.5 (95%CI 3.6-5.3); 1.6 (95%CI 0.7-2.4) vs. 2.8 (95%CI 2.2-3.3), respectively] and comparable to the Italian GP. Discussion: According to the most recent studies on SOTRs and SARS-CoV-2 infection, our data strongly suggest that, in contrast to what was observed in NL-SOTRs receiving a similar immunosuppressive therapy, LTRs have the same risk of SARS-CoV-2 infection, mortality, and lethality observed in the general population. These results suggest an immune response to SARS-CoV-2 infection in LTRS that is different from NL-SOTRs, probably related to the ability of the grafted liver to induce immunotolerance

    Physico-chemical factors predisposing to pigment gallstone formation in liver cirrhosis

    No full text
    Liver cirrhosis is associated with a high prevalence of pigmentary cholelithiasis. The major compound of pigment gallstones is unconjugated bilirubin (UCB) in the form of calcium bilirubinate salts or a black pigment polymer. Most of UCB in bile derives from enzymic or non-enzymic hydrolysis of mono- or diconjugated bilirubin. Changes in the relative ratios between these two bilirubin species have been associated with pigment gallstones. It has also been shown that UCB solubilization in bile depends on its interaction with bile salts. In order to clarify the factors predisposing cirrhotic patients to pigment stone formation, we measured UCB, monoconjugated bilirubin (MCB) and diconjugated bilirubin (DCB) in duodenal bile of 15 patients with cirrhosis, ten patients with chronic active hepatitis (CAH) and ten normal subjects, we also analyzed their relationships with lipids. In cirrhotic patients, the MCB concentration in bile was significantly (p less than 0.05) higher than in normal subjects and was correlated with the severity of the disease. Bile salts and lecithin concentrations were significantly lower in cirrhosis (p less than 0.005 vs. CAH or normals). Cirrhotic patients have a bile salts/UCB molar ratio which is one third that of CAH patients or normal subjects (p less than 0.01). No differences were found between CAH patients and controls in each of the parameters tested. In conclusion, we propose that the very low BS/UCB molar ratio and the very high biliary content in MCB represent two independent physico-chemical factors predisposing cirrhotic patients to pigmentary cholelithiasis

    Transport, utilization and biliary secretion of lysophosphatidylcholine in the rat liver

    No full text
    The hepatic uptake, transport and utilization of plasma lysophosphatidylcholine (lysoPC) and its contribution to biliary lipid secretion have been investigated in bile-fistula rats. The animals were given a single intravenous dose of sn-1-[1-14C]palmitoyl-lysoPC, under constant intravenous sodium taurocholate infusion (1 mumol/min), and the fate of the label was followed in blood, bile and liver for up to 3 h. The livers were excised at given time points, extracted and/or homogenized to determine the lipid distribution and subcellular location of radioactivity. LysoPC was rapidly cleared from plasma, though a consistent fraction of the label persisted in plasma over the experimental time-period in the form of either lysoPC or PC. Recovery of radioactivity in the liver varied from 15.6% after 5 min to 19.5% after 3 h. Hepatic lysoPC underwent rapid microsomal acylation to form specific PC molecular species (mainly 16:0-20:4 and, to a lesser extent, 16:0-18:2 and 16:0-16:1). Ultrafiltration, dialysis and gel-chromatographic analyses of cytosolic fractions (post 105,000 X g supernatants) indicated that lysoPC is transported to the site of acylation mostly as a macromolecular aggregate with an approx. Mr of 14,400. Small amounts of radioactivity were secreted into bile over 3 h (20% in the form of lysoPC and the remainder as 16:0-18:2 and 16:0-20:4 PC species). Plasma lysoPC, taken up by the liver, is mostly transported by a cytosolic carrier with a molecular weight close to fatty-acid-binding proteins; it then enters a distinct acylation pathway, selective for some polyunsaturated-PC species and does not contribute significantly to biliary secretion, either directly, or through its products
    • …
    corecore