376 research outputs found

    Identifying Retweetable Tweets with a Personalized Global Classifier

    Full text link
    In this paper we present a method to identify tweets that a user may find interesting enough to retweet. The method is based on a global, but personalized classifier, which is trained on data from several users, represented in terms of user-specific features. Thus, the method is trained on a sufficient volume of data, while also being able to make personalized decisions, i.e., the same post received by two different users may lead to different classification decisions. Experimenting with a collection of approx.\ 130K tweets received by 122 journalists, we train a logistic regression classifier, using a wide variety of features: the content of each tweet, its novelty, its text similarity to tweets previously posted or retweeted by the recipient or sender of the tweet, the network influence of the author and sender, and their past interactions. Our system obtains F1 approx. 0.9 using only 10 features and 5K training instances.Comment: This is a long paper version of the extended abstract titled "A Personalized Global Filter To Predict Retweets", of the same authors, which was published in the 25th ACM UMAP conference in Bratislava, Slovakia, in July 201

    Deep Memory Networks for Attitude Identification

    Full text link
    We consider the task of identifying attitudes towards a given set of entities from text. Conventionally, this task is decomposed into two separate subtasks: target detection that identifies whether each entity is mentioned in the text, either explicitly or implicitly, and polarity classification that classifies the exact sentiment towards an identified entity (the target) into positive, negative, or neutral. Instead, we show that attitude identification can be solved with an end-to-end machine learning architecture, in which the two subtasks are interleaved by a deep memory network. In this way, signals produced in target detection provide clues for polarity classification, and reversely, the predicted polarity provides feedback to the identification of targets. Moreover, the treatments for the set of targets also influence each other -- the learned representations may share the same semantics for some targets but vary for others. The proposed deep memory network, the AttNet, outperforms methods that do not consider the interactions between the subtasks or those among the targets, including conventional machine learning methods and the state-of-the-art deep learning models.Comment: Accepted to WSDM'1

    Expression cloning of a human Fc receptor for IgA.

    Full text link

    Determination of the Carrier-Envelope Phase of Few-Cycle Laser Pulses with Terahertz-Emission Spectroscopy

    Full text link
    The availability of few-cycle optical pulses opens a window to physical phenomena occurring on the attosecond time scale. In order to take full advantage of such pulses, it is crucial to measure and stabilise their carrier-envelope (CE) phase, i.e., the phase difference between the carrier wave and the envelope function. We introduce a novel approach to determine the CE phase by down-conversion of the laser light to the terahertz (THz) frequency range via plasma generation in ambient air, an isotropic medium where optical rectification (down-conversion) in the forward direction is only possible if the inversion symmetry is broken by electrical or optical means. We show that few-cycle pulses directly produce a spatial charge asymmetry in the plasma. The asymmetry, associated with THz emission, depends on the CE phase, which allows for a determination of the phase by measurement of the amplitude and polarity of the THz pulse

    Emerging Approaches to DNA Data Storage: Challenges and Prospects

    Get PDF
    With the total amount of worldwide data skyrocketing, the global data storage demand is predicted to grow to 1.75 Ă— 1014GB by 2025. Traditional storage methods have difficulties keeping pace given that current storage media have a maximum density of 103GB/mm3. As such, data production will far exceed the capacity of currently available storage methods. The costs of maintaining and transferring data, as well as the limited lifespans and significant data losses associated with current technologies also demand advanced solutions for information storage. Nature offers a powerful alternative through the storage of information that defines living organisms in unique orders of four bases (A, T, C, G) located in molecules called deoxyribonucleic acid (DNA). DNA molecules as information carriers have many advantages over traditional storage media. Their high storage density, potentially low maintenance cost, ease of synthesis, and chemical modification make them an ideal alternative for information storage. To this end, rapid progress has been made over the past decade by exploiting user-defined DNA materials to encode information. In this review, we discuss the most recent advances of DNA-based data storage with a major focus on the challenges that remain in this promising field, including the current intrinsic low speed in data writing and reading and the high cost per byte stored. Alternatively, data storage relying on DNA nanostructures (as opposed to DNA sequence) as well as on other combinations of nanomaterials and biomolecules are proposed with promising technological and economic advantages. In summarizing the advances that have been made and underlining the challenges that remain, we provide a roadmap for the ongoing research in this rapidly growing field, which will enable the development of technological solutions to the global demand for superior storage methodologies

    Feasibility of detecting single atoms using photonic bandgap cavities

    Get PDF
    We propose an atom-cavity chip that combines laser cooling and trapping of neutral atoms with magnetic microtraps and waveguides to deliver a cold atom to the mode of a fiber taper coupled photonic bandgap (PBG) cavity. The feasibility of this device for detecting single atoms is analyzed using both a semi-classical treatment and an unconditional master equation approach. Single-atom detection seems achievable in an initial experiment involving the non-deterministic delivery of weakly trapped atoms into the mode of the PBG cavity.Comment: 11 pages, 5 figure

    Statistical Inference for Valued-Edge Networks: Generalized Exponential Random Graph Models

    Get PDF
    Across the sciences, the statistical analysis of networks is central to the production of knowledge on relational phenomena. Because of their ability to model the structural generation of networks, exponential random graph models are a ubiquitous means of analysis. However, they are limited by an inability to model networks with valued edges. We solve this problem by introducing a class of generalized exponential random graph models capable of modeling networks whose edges are valued, thus greatly expanding the scope of networks applied researchers can subject to statistical analysis

    International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people

    Get PDF
    These recommendations were systematically developed on behalf of the Network for Early Onset Cystic Kidney Disease (NEOCYST) by an international group of experts in autosomal dominant polycystic kidney disease (ADPKD) from paediatric and adult nephrology, human genetics, paediatric radiology and ethics specialties together with patient representatives. They have been endorsed by the International Pediatric Nephrology Association (IPNA) and the European Society of Paediatric Nephrology (ESPN). For asymptomatic minors at risk of ADPKD, ongoing surveillance (repeated screening for treatable disease manifestations without diagnostic testing) or immediate diagnostic screening are equally valid clinical approaches. Ultrasonography is the current radiological method of choice for screening. Sonographic detection of one or more cysts in an at-risk child is highly suggestive of ADPKD, but a negative scan cannot rule out ADPKD in childhood. Genetic testing is recommended for infants with very-early-onset symptomatic disease and for children with a negative family history and progressive disease. Children with a positive family history and either confirmed or unknown disease status should be monitored for hypertension (preferably by ambulatory blood pressure monitoring) and albuminuria. Currently, vasopressin antagonists should not be offered routinely but off-label use can be considered in selected children. No consensus was reached on the use of statins, but mTOR inhibitors and somatostatin analogues are not recommended. Children with ADPKD should be strongly encouraged to achieve the low dietary salt intake that is recommended for all children

    First records of two mealybug species in Brazil and new potential pests of papaya and coffee

    Get PDF
    Five mealybug (Hemiptera: Pseudococcidae) plant pest species: Dysmicoccus grassii (Leonardi), Ferrisia malvastra (McDaniel), Ferrisia virgata (Cockerell), Phenacoccus tucumanus Granara de Willink, and Pseudococcus elisae Borchsenius are recorded for the first time in the state of EspĂ­rito Santo, Brazil. These are the first records of D. grassii in Brazil, from papaya (Carica papaya, Caricaceae), and from coffee (Coffea canephora, Rubiaceae). Ferrisia malvastra is also newly recorded in Brazil, where it was found on Bidens pilosa (Asteraceae). Ferrisia virgata was collected from an unidentified weed and Phenacoccus tucumanus from Citrus sp. (Rutaceae). Plotococcus capixaba Kondo was found on pitanga (Eugenia cf. pitanga, Myrtaceae) and Pseudococcus elisae on Coffea canephora, which are new host records for these mealybugs
    • …
    corecore