11 research outputs found

    In vivo antihypertensive mechanism of lactoferrin-derived peptides: Reversion of angiotensin I- and angiotensin II-induced hypertension in Wistar rats

    Get PDF
    Novel peptides with antihypertensive effects in SHR rats have previously been identified in lactoferrin (LF) hydrolysates. To investigate their in vivo antihypertensive mechanism, we have assessed the blood pressure lowering effects of two of these LF-derived peptides (RPYL and DPYKLRP) in Wistar rats subjected to either angiotensin I- or angiotensin II-induced hypertension. Blood pressure was measured by the tail-cuff method, hypertension was induced by subcutaneous infusion of angiotensins, and then captopril, valsartan or LF-derived peptides orally administered. Angiotensin I- and angiotensin II-induced hypertension were reversed by captopril and valsartan, respectively. RPYL and DPYKLRP reversed angiotensin I-induced hypertension, while DPYKLRP but not RPYL produced a modest reversion of angiotensin II-elicited hypertension. Neither RPYL nor DPYKLRP modified normotension. Thus, in vivo ACE inhibition is involved in the antihypertensive effects of LF-derived peptides like RPYL and DPYKLRP, while inhibition of AT1 receptor-mediated vasoconstriction plays a less relevant role.This work was supported by grant AGL2010-21009 from ‘Ministerio de Educación y Ciencia – FEDER’, Consolider Ingenio 2010, Fun-C-Food, CSD2007-00063 and RETICS INVICTUS RD12/0014/0004 from ‘Instituto de Salud Carlos III’. A. García-Tejedor is recipient of a predoctoral fellowship from ‘Ministerio de Educación y Ciencia’ (BES-2011-044424).Peer reviewe

    An antihypertensive lactoferrin hydrolysate inhibits angiotensin I-converting enzyme, modifies expression of hypertension-related genes and enhances nitric oxide production in cultured human endothelial cells

    Get PDF
    This study was aimed to explore whether an antihypertensive lactoferrin hydrolysate (LFH) can inhibit angiotensin I-converting enzyme (ACE) activity and modify the expression of genes related to hypertension in human umbilical vein endothelial cells (HUVEC). LFH induced significant inhibition of ACE activity but it did not affect ACE mRNA levels after 24 h of exposure. LFH treatment significantly affected the expression of genes encoding for proteins involved in nitric oxide pathway such as soluble guanylate cyclase 1 α3 subunit (GUCY1A3; 4.42-fold increase) and nitric oxide synthase trafficking (NOSTRIN; 2.45-fold decrease). Furthermore, expression of the PTGS2/COX-2 gene encoding prostaglandin-endoperoxide synthase 2 a key component of prostaglandin synthesis was significantly increased (2.23-fold). Moreover, NOSTRIN mRNA downregulation was consistent with reduced NOSTRIN protein expression and increased NO production observed in HUVEC. The present study reveals the complexity of the effects exerted by LFH opening avenues for the better understanding of its antihypertensive effects.This work was supported by grant AGL2010-21009 from ‘Ministerio de Educación y Ciencia – FEDER’, Consolider Ingenio 2010, Fun-C-Food, CSD2007-00063 and RETICS INVICTUS RD12/0014/0004 from ‘Instituto de Salud Carlos III’. A. García-Tejedor is recipient of a predoctoral fellowship from ‘Ministerio de Educación y Ciencia’ (BES-2011-044424).Peer reviewe

    Laforin, a dual specificity protein phosphatase involved in Lafora disease, is phosphorylated at Ser25 by AMP-activated protein kinase

    Get PDF
    Carlos Romá-Mateo et alt.Lafora progressive myoclonus epilepsy [LD (Lafora disease)] is a fatal autosomal recessive neurodegenerative disorder caused by loss-of-function mutations in either the EPM2A gene, encoding the dual-specificity phosphatase laforin, or the EPM2B gene, encoding the E3-ubiquitin ligase malin. Previously, we and others showed that laforin and malin form a functional complex that regulates multiple aspects of glycogen metabolism, and that the interaction between laforin and malin is enhanced by conditions activating AMPK (AMP-activated protein kinase). In the present study, we demonstrate that laforin is a phosphoprotein, as indicated by two-dimensional electrophoresis, and we identify Ser25 as the residue involved in this modification. We also show that Ser25 is phosphorylated both in vitro and in vivo by AMPK. Lastly, we demonstrate that this residue plays a critical role for both the phosphatase activity and the ability of laforin to interact with itself and with previously established binding partners. The results of the present study suggest that phosphorylation of laforin-Ser25 by AMPK provides a mechanism to modulate the interaction between laforin and malin. Regulation of this complex is necessary to maintain normal glycogen metabolism. Importantly, Ser25 is mutated in some LD patients (S25P), and our results begin to elucidate the mechanism of disease in these patientsThis work was supported the Spanish Ministry of Education and Science [grant number SAF2008-01907 (to P.S.)]; the Generalitat Valenciana [grant number Prometeo 2009/051 (to P.S.)]; the National Institutes of Health [grant numbers R00NS061803, P20RR020171, R01NS070899 (to M.S.G.)]; and the University of Kentucky College of Medicine startup funds (to M.S.G.)Peer reviewe

    Desarrollo de recubrimientos electroestirados bioactivos para aplicaciones biomédicas

    Get PDF
    Desarrollo de recubrimientos electroestirados bioactivos para aplicaciones biomédicas. La presente invención se refiere a una composición bioactiva obtenida por la técnica de electroestirado y compuesta por al menos un polímero. Además, la invención también describe un procedimiento de incorporación de esta composición, bioactiva electroestirada, a modo de recubrimiento sobre una matriz plástica para obtener materiales compuestos para su uso en implantes biomédicos y en ingeniería de tejidos, tanto biodegradables como no biodegradables.Peer reviewedConsejo Superior de Investigaciones Científicas (España)A1 Solicitud de patente con informe sobre el estado de la técnic

    Unraveling the mechanisms of action of lactoferrin-derived antihypertensive peptides: ACE inhibition and beyond

    Get PDF
    Hypertension is one of the most important causes of cardiovascular and renal morbidity and mortality, and it represents a serious health problem in Western countries. Over the last few decades scientific interest in food-derived antihypertensive peptides has grown as an alternative to drugs in the control of systemic blood pressure. Most of these peptides target the angiotensin I-converting enzyme (ACE) but emerging evidence points to other antihypertensive mechanisms beyond ACE inhibition. The milk protein lactoferrin (LF) is a good source of orally active antihypertensive peptides the characterization of which, including ex vivo functional assays and in vivo approaches, shows that they might act on several molecular targets. This review summarizes the mechanisms of action underlying the blood pressure-lowering effects of LF-derived peptides, focusing on their interaction with different components of the renin-angiotensin (RAS) and endothelin (ET) systems. The ability of LF-derived peptides to modify the expression of genes encoding proteins involved in the nitric oxide (NO) pathway and prostaglandin synthesis is also described.Work on the mechanism of action of LF-derived peptides has been supported by grants AGL2004-04522, AGL2007-64672/ALI and AGL2010-21009 from ‘Ministerio de Educación y Ciencia’-FEDER, Consolider Ingenio 2010, Fun-C-Food, CSD2007-00063 and RETICS RD06/0026/2006 and RD12/0014/0004 from ‘Instituto de Salud Carlos III’. Aurora García-Tejedor, Ricardo Fernández-Musoles and Pedro Ruiz-Giménez were funded by predoctoral fellowships from ‘Ministerio de Educación y Ciencia’ (BES-2011-044424, BES-2008-004472 and BES-2005-10382, respectively).Peer reviewe

    Characterization of intestinal absorption of As(V), MMA(V) and DMA(V) using Caco-2 cell line

    No full text
    Trabajo presentado en el 3rd International IUPAC Symposium on trace Elements in Food, celebrado en Roma (Italia) Del 1 al 3 de abril de 200

    Characterization of the intestinal absorption of arsenate, monomethylarsonic acid, and dimethylarsinic acid using the caco-2 cell line

    No full text
    Many toxicological studies have been conducted with arsenic species in target organ cell lines. However, although epithelial gastrointestinal cells constitute the first barrier to the absorption of contaminants, studies using intestinal cells are scarce. The present study examines absorption through the intestinal epithelium of the pentavalent arsenic species most commonly found in foods [arsenate, As(V); monomethylarsonic acid, MMA(V); and dimethylarsinic acid, DMA(V)], using the Caco-2 cell line as a model. Different concentrations (1.3-667.6 μ M) and culture conditions (media, pH, addition of phosphates, and treatment with ethylenediaminetetraacetic acid) were evaluated to characterize such transport. The apparent permeabilities indicate that the methylated species show low absorption, whereas As(V) is a compound with moderate absorption. The kinetic study shows only a saturable component for MMA(V) transport in the range of concentrations assayed. The existence of paracellular transport was shown for all of the species, with greater significance in the case of the methylated forms. As(V) absorption was inhibited by 10 mM phosphate, and a phosphate transporter therefore could take part in intestinal absorption. Acidification of the medium (pH 5.5) resulted in a marked increase in As(V) and DMA(V) permeability (4-8 times, respectively) but not in MMA(V) permeability. This makes it necessary to consider the possible existence of absorption in the proximal intestine and even in the stomach, where the environment is acidic; alternatively, an H+-dependent transporter may be involved. The results obtained constitute the basis for future research on the mechanisms involved in the intestinal absorption of arsenic and its species, a decisive step in relation to their toxic action. © 2010 American Chemical Society

    Inorganic arsenic and its metabolites induce neural stem cell apoptosis. Synergism of Fluoride coexposure

    No full text
    Trabajo presentado en el XII International Congress of Toxicology, celebrado en Barcelona, España, del 19 al 23 de julio de 201

    Regulation of glycogen synthesis by the laforin-malin complex is modulated by the AMP-activated protein kinase pathway

    Get PDF
    12 páginas, 8 figuras -- PAGS nros. 667-678Lafora progressive myoclonus epilepsy (LD) is a fatal autosomal recessive neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies. LD is caused by mutations in two genes, EPM2A and EPM2B, encoding respectively laforin, a dual-specificity protein phosphatase, and malin, an E3 ubiquitin ligase. Previously, we and others have suggested that the interactions between laforin and PTG (a regulatory subunit of type 1 protein phosphatase) and between laforin and malin are critical in the pathogenesis of LD. Here, we show that the laforin–malin complex downregulates PTG-induced glycogen synthesis in FTO2B hepatoma cells through a mechanism involving ubiquitination and degradation of PTG. Furthermore, we demonstrate that the interaction between laforin and malin is a regulated process that is modulated by the AMP-activated protein kinase (AMPK). These findings provide further insights into the critical role of the laforin–malin complex in the control of glycogen metabolism and unravel a novel link between the energy sensor AMPK and glycogen metabolism. These data advance our understanding of the functional role of laforin and malin, which hopefully will facilitate the development of appropriate LD therapiesThis work was supported by grants from Fundación La Caixa, Fundación Marato TV3, the Spanish Ministry of Education and Science (SAF2005-00852; SAF2005-00913, BFU2005-00087), the Instituto de Salud Carlos III (CIBER-ER) and the European Commission (LSHM-CT-2004-005272)Peer reviewe
    corecore