218 research outputs found

    Reconstitution of hepatitis B virus (HBV)-specific T cell responses with treatment of human immunodeficiency virus/HBV coinfection

    Get PDF
    Liver-related mortality is an increasing problem in human immunodeficiency virus (HIV)/hepatitis B virus (HBV)-coinfected patients receiving highly active antiretroviral therapy (HAART). In HIV-negative patients, HBV chronicity is associated with a reduction in specific T cell responses that can be partially restored by treatment with lamivudine. We studied 5 HIV/HBV-coinfected patients treated with HAART, either with or without addition of a drug with specific anti-HBV activity. Our data show that reconstitution of some HBV-specific T cell responses can also occur in HIV-positive patients after a reduction in HBV load. This potential to recover T cell responses, which has been thought to be critical for HBV control, provides support for the addition of anti-HBV therapy in the treatment of HIV/HBV-coinfected patients

    Blockade of Immunosuppressive Cytokines Restores NK Cell Antiviral Function in Chronic Hepatitis B Virus Infection

    Get PDF
    NK cells are enriched in the liver, constituting around a third of intrahepatic lymphocytes. We have previously demonstrated that they upregulate the death ligand TRAIL in patients with chronic hepatitis B virus infection (CHB), allowing them to kill hepatocytes bearing TRAIL receptors. In this study we investigated whether, in addition to their pathogenic role, NK cells have antiviral potential in CHB. We characterised NK cell subsets and effector function in 64 patients with CHB compared to 31 healthy controls. We found that, in contrast to their upregulated TRAIL expression and maintenance of cytolytic function, NK cells had a markedly impaired capacity to produce IFN-gamma in CHB. This functional dichotomy of NK cells could be recapitulated in vitro by exposure to the immunosuppressive cytokine IL-10, which was induced in patients with active CHB. IL-10 selectively suppressed NK cell IFN-gamma production without altering cytotoxicity or death ligand expression. Potent antiviral therapy reduced TRAIL-expressing CD56 bright NK cells, consistent with the reduction in liver inflammation it induced; however, it was not able to normalise IL-10 levels or the capacity of NK cells to produce the antiviral cytokine IFN-gamma. Blockade of IL-10 +/- TGF-beta restored the capacity of NK cells from both the periphery and liver of patients with CHB to produce IFN-gamma, thereby enhancing their non-cytolytic antiviral capacity. In conclusion, NK cells may be driven to a state of partial functional tolerance by the immunosuppressive cytokine environment in CHB. Their defective capacity to produce the antiviral cytokine IFN-gamma persists in patients on antiviral therapy but can be corrected in vitro by IL-10+/- TGF-beta blockade

    Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows

    Get PDF
    We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.Fil: Goncearenco, Alexander. National Institutes of Health; Estados UnidosFil: Li, Minghui. Soochow University; China. National Institutes of Health; Estados UnidosFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Shoemaker, Benjamin A. National Institutes of Health; Estados UnidosFil: Panchenko, Anna R. National Institutes of Health; Estados Unido

    Suppression of HBV by Tenofovir in HBV/HIV coinfected patients : a systematic review and meta-analysis

    Get PDF
    Background: Hepatitis B coinfection is common in HIV-positive individuals and as antiretroviral therapy has made death due to AIDS less common, hepatitis has become increasingly important. Several drugs are available to treat hepatitis B. The most potent and the one with the lowest risk of resistance appears to be tenofovir (TDF). However there are several questions that remain unanswered regarding the use of TDF, including the proportion of patients that achieves suppression of HBV viral load and over what time, whether suppression is durable and whether prior treatment with other HBV-active drugs such as lamivudine, compromises the efficacy of TDF due to possible selection of resistant HBV strains. Methods: A systematic review and meta-analysis following PRISMA guidelines and using multilevel mixed effects logistic regression, stratified by prior and/or concomitant use of lamivudine and/or emtricitabine. Results: Data was available from 23 studies including 550 HBV/HIV coinfected patients treated with TDF. Follow up was for up to seven years but to ensure sufficient power the data analyses were limited to three years. The overall proportion achieving suppression of HBV replication was 57.4%, 79.0% and 85.6% at one, two and three years, respectively. No effect of prior or concomitant 3TC/FTC was shown. Virological rebound on TDF treatment was rare. Interpretation: TDF suppresses HBV to undetectable levels in the majority of HBV/HIV coinfected patients with the proportion fully suppressed continuing to increase during continuous treatment. Prior treatment with 3TC/FTC does not compromise efficacy of TDF treatment. The use of combination treatment with 3TC/FTC offers no significant benefit over TDF alone

    Gated Diffusion-controlled Reactions

    Get PDF
    The binding and active sites of proteins are often dynamically occluded by motion of the nearby polypeptide. A variety of theoretical and computational methods have been developed to predict rates of ligand binding and reactivity in such cases. Two general approaches exist, "protein centric" approaches that explicitly treat only the protein target, and more detailed dynamical simulation approaches in which target and ligand are both treated explicitly. This mini-review describes recent work in this area and some of the biological implications

    Improving motivation among primary health care workers in Tanzania: a health worker perspective

    Get PDF
    In Tanzania access to urban and rural primary health care is relatively widespread, yet there is evidence of considerable bypassing of services; questions have been raised about how to improve functionality. The aim of this study was to explore the experiences of health workers working in the primary health care facilities in Kilimanjaro Region, Tanzania, in terms of their motivation to work, satisfaction and frustration, and to identify areas for sustainable improvement to the services they provide. The primary issues arising pertain to complexities of multitasking in an environment of staff shortages, a desire for more structured and supportive supervision from managers, and improved transparency in career development opportunities. Further, suggestions were made for inter-facility exchanges, particularly on commonly referred cases. The discussion highlights the context of some of the problems identified in the results and suggests that some of the preferences presented by the health workers be discussed at policy level with a view to adding value to most services with minimum additional resources

    Computational Analysis of Phosphopeptide Binding to the Polo-Box Domain of the Mitotic Kinase PLK1 Using Molecular Dynamics Simulation

    Get PDF
    The Polo-Like Kinase 1 (PLK1) acts as a central regulator of mitosis and is over-expressed in a wide range of human tumours where high levels of expression correlate with a poor prognosis. PLK1 comprises two structural elements, a kinase domain and a polo-box domain (PBD). The PBD binds phosphorylated substrates to control substrate phosphorylation by the kinase domain. Although the PBD preferentially binds to phosphopeptides, it has a relatively broad sequence specificity in comparison with other phosphopeptide binding domains. We analysed the molecular determinants of recognition by performing molecular dynamics simulations of the PBD with one of its natural substrates, CDC25c. Predicted binding free energies were calculated using a molecular mechanics, Poisson-Boltzmann surface area approach. We calculated the per-residue contributions to the binding free energy change, showing that the phosphothreonine residue and the mainchain account for the vast majority of the interaction energy. This explains the very broad sequence specificity with respect to other sidechain residues. Finally, we considered the key role of bridging water molecules at the binding interface. We employed inhomogeneous fluid solvation theory to consider the free energy of water molecules on the protein surface with respect to bulk water molecules. Such an analysis highlights binding hotspots created by elimination of water molecules from hydrophobic surfaces. It also predicts that a number of water molecules are stabilized by the presence of the charged phosphate group, and that this will have a significant effect on the binding affinity. Our findings suggest a molecular rationale for the promiscuous binding of the PBD and highlight a role for bridging water molecules at the interface. We expect that this method of analysis will be very useful for probing other protein surfaces to identify binding hotspots for natural binding partners and small molecule inhibitors

    What constitutes responsiveness of physicians: A qualitative study in rural Bangladesh

    Get PDF
    Responsiveness entails the social actions by health providers to meet the legitimate expectations of patients. It plays a critical role in ensuring continuity and effectiveness of care within people centered health systems. Given the lack of contextualized research on responsiveness, we qualitatively explored the perceptions of outpatient users and providers regarding what constitute responsiveness in rural Bangladesh. An exploratory study was undertaken in Chuadanga, a southwestern Bangladeshi District, involving in-depth interviews of physicians (n = 17) and users (n = 7), focus group discussions with users (n = 4), and observations of patient provider interactions (three weeks). Analysis was guided by a conceptual framework of responsiveness, which includes friendliness, respecting, informing and guiding, gaining trust and optimizing benefits. In terms of friendliness, patients expected physicians to greet them before starting consultations; even though physicians considered this unusual. Patients also expected physicians to hold social talks during consultations, which was uncommon. With regards to respect patients expected physicians to refrain from disrespecting them in various ways; but also by showing respect explicitly. Patients also had expectations related to informing and guiding: they desired explanation on at least the diagnosis, seriousness of illness, treatment and preventive steps. In gaining trust, patients expected that physicians would refrain from illegal or unethical activities related to patients, e.g., demanding money against free services, bringing patients in own private clinics by brokers (dalals), colluding with diagnostic centers, accepting gifts from pharmaceutical representatives. In terms of optimizing benefits: patients expected that physicians should be financially sensitive and consider individual need of patients. There were multiple dimensions of responsiveness- for some, stakeholders had a consensus; context was an important factor to understand them. This being an exploratory study, further research is recommended to validate the nuances of the findings. It can be a guideline for responsiveness practices, and a tipping point for future research

    CACHE (Critical Assessment of Computational Hit-finding Experiments): A public–private partnership benchmarking initiative to enable the development of computational methods for hit-finding

    Get PDF
    One aspirational goal of computational chemistry is to predict potent and drug-like binders for any protein, such that only those that bind are synthesized. In this Roadmap, we describe the launch of Critical Assessment of Computational Hit-finding Experiments (CACHE), a public benchmarking project to compare and improve small-molecule hit-finding algorithms through cycles of prediction and experimental testing. Participants will predict small-molecule binders for new and biologically relevant protein targets representing different prediction scenarios. Predicted compounds will be tested rigorously in an experimental hub, and all predicted binders as well as all experimental screening data, including the chemical structures of experimentally tested compounds, will be made publicly available and not subject to any intellectual property restrictions. The ability of a range of computational approaches to find novel binders will be evaluated, compared and openly published. CACHE will launch three new benchmarking exercises every year. The outcomes will be better prediction methods, new small-molecule binders for target proteins of importance for fundamental biology or drug discovery and a major technological step towards achieving the goal of Target 2035, a global initiative to identify pharmacological probes for all human proteins. [Figure not available: see fulltext.
    corecore