22 research outputs found

    Aerosol Jet Printing of 3D Pillar Arrays from Photopolymer Ink

    Get PDF
    An aerosol jet printing (AJP) printing head built on top of precise motion systems can provide positioning deviation down to 3 μm, printing areas as large as 20 cm × 20 cm × 30 cm, and five-axis freedom of movement. Typical uses of AJP are 2D printing on complex or flexible substrates, primarily for applications in printed electronics. Nearly all commercially available AJP inks for 2D printing are designed and optimized to reach desired electronic properties. In this work, we explore AJP for the 3D printing of free-standing pillar arrays. We utilize aryl epoxy photopolymer as ink coupled with a cross-linking “on the fly” technique. Pillar structures 550 μm in height and with a diameter of 50 μm were 3D printed. Pillar structures were characterized via scanning electron microscopy, where the morphology, number of printed layers and side effects of the AJP technique were investigated. Satellite droplets and over-spray seem to be unavoidable for structures smaller than 70 μm. Nevertheless, reactive ion etching (RIE) as a post-processing step can mitigate AJP side effects. AJP-RIE together with photopolymer-based ink can be promising for the 3D printing of microstructures, offering fast and maskless manufacturing without wet chemistry development and heat treatment post-processing

    Triple-cation perovskite solar cells fabricated by hybrid PVD/blade coating process using green solvents

    Full text link
    The scalability of highly efficient organic-inorganic perovskite solar cells (PSCs) is one of the remaining challenges of solar module manufacturing. Various scalable methods have been explored to strive for uniform perovskite films of high crystal quality on large-area substrates. However, each of these methods have individual drawbacks, limiting the successful commercialization of perovskite photovoltaics. Here, we report a fully scalable hybrid process, which combines vapor- and solution-based techniques to deposit high quality uniform perovskite films on large-area substrates. This two-step process does not use toxic solvents, and it further allows facile implementation of passivation strategies and additives. We fabricated PSCs based on this process and used blade coating to deposit both charge transporting layers (SnO2 and Spiro-OMeTAD) without hazardous solvents in ambient air. The fabricated PSCs have yielded open-circuit voltage up to 1.16 V and power conversion efficiency of 18.7 % with good uniformity on 5 cm x 5 cm substrates

    Photonic Sintering of Oxide Ceramic Films: Effect of Colored FexOy Nanoparticle Pigments

    No full text
    Alumina and zirconia thin films modified with colored nano-FexOy pigments were sintered by the flash-lamp-annealing method. We selected a nano α-Al2O3 and micron α-Al2O3 bimodal mixture as the base precursor material, and we doped it with 5 vol% of FexOy red/brown/black/yellow pigments. The coatings were deposited from nanoparticle dispersions both on glass and on flexible metal foil. The characteristics of the thin films obtained with the use of various additives were compared, including the surface morphologies, optical properties, crystallinities, and structures. Flash lamp annealing was applied with the maximum total energy density of 130 J/cm2 and an overall annealing time of 7 s. Based on the simulated temperature profiles and electron-microscopy results, a maximum annealing temperature of 1850 °C was reached for the red Al2O3: Fe2O3 ceramic film. The results show that red α-Fe2O3 pigments allow for the achievement of maximum layer absorption, which is effective for flash lamp sintering. It was also possible to use the selected red α-Fe2O3 particles for the flash-lamp-assisted sintering of ZrO2 on a 30 µm-thin flexible stainless-steel substrate

    Aerosol Jet Printing of 3D Pillar Arrays from Photopolymer Ink

    No full text
    An aerosol jet printing (AJP) printing head built on top of precise motion systems can provide positioning deviation down to 3 μm, printing areas as large as 20 cm × 20 cm × 30 cm, and five-axis freedom of movement. Typical uses of AJP are 2D printing on complex or flexible substrates, primarily for applications in printed electronics. Nearly all commercially available AJP inks for 2D printing are designed and optimized to reach desired electronic properties. In this work, we explore AJP for the 3D printing of free-standing pillar arrays. We utilize aryl epoxy photopolymer as ink coupled with a cross-linking “on the fly” technique. Pillar structures 550 μm in height and with a diameter of 50 μm were 3D printed. Pillar structures were characterized via scanning electron microscopy, where the morphology, number of printed layers and side effects of the AJP technique were investigated. Satellite droplets and over-spray seem to be unavoidable for structures smaller than 70 μm. Nevertheless, reactive ion etching (RIE) as a post-processing step can mitigate AJP side effects. AJP-RIE together with photopolymer-based ink can be promising for the 3D printing of microstructures, offering fast and maskless manufacturing without wet chemistry development and heat treatment post-processing

    Controlled Li Alloying of CZTSSe Absorbers by Electrochemical Treatment

    No full text
    <p>Oral presentation at 2023 MRS Spring Meeting</p&gt

    Invisible and Flexible Printed Sensors Based on ITO Nanoparticle Ink for Security Applications

    Get PDF
    Here, we propose a method to create a transparent security system based on printed conductive indium tin oxide (ITO)—the most widely used transparent conducting oxide material integrated into the devices with high transparency. Commonly used solution-processed ITO annealing methods are utilizing temperatures which are limiting the use of flexible polymeric substrates. Our method combines inkjet printing on flexible temperature-stable colorless polyimide (CPI) substrate with fast flash lamp annealing (FLA). In this study, millisecond pulses of visible light from a xenon lamp induce rapid heating of the ITO films up to 650°C through the light-absorbing additional layer of a colored organic dye onto printed ITO, whereas the CPI bulk never exceeds the melting point. Fabricated flexible ITO patterns on CPI film processed with the flash lamp annealing through the dye layer exhibit a transmittance of up to 85% at the wavelength of 550 nm and sheet resistance of 520 Ω/sq for a 70 nm layer thickness. With the proposed technology of our demonstrator realization—transparent glass/window or any other object such as a curved door lock can be used for integrating a touch-enabled transparent security access system, which would be completely invisible

    Transparent Conducting Films Based on Carbon Nanotubes: Rational Design toward the Theoretical Limit

    No full text
    Funding Information: The authors thank Dr. D. Krasnikov and Dr. A. Goldt for fruitful discussions of the review and their valuable comments. D.A.I. and O.E.G. acknowledge the Russian Science Foundation (Project No. 21‐19‐00226). A.G.N. thanks the Council on grants of the President of RF. (grant No. НШ‐1330.2022.1.3). Publisher Copyright: © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.Electrically conductive thin-film materials possessing high transparency are essential components for many optoelectronic devices. The advancement in the transparent conductor applications requires a replacement of indium tin oxide (ITO), one of the key materials in electronics. ITO and other transparent conductive metal oxides have several drawbacks, including poor flexibility, high refractive index and haze, limited chemical stability, and depleted raw material supply. Single-walled carbon nanotubes (SWCNTs) are a promising alternative for transparent conducting films (TCFs) because of their unique and excellent chemical and physical properties. Here, the latest achievements in the optoelectronic performance of TCFs based on SWCNTs are analyzed. Various approaches to evaluate the performance of transparent electrodes are briefly reviewed. A roadmap for further research and development of the transparent conductors using “rational design,” which breaks the deadlock for obtaining the TCFs with a performance close to the theoretical limit, is also described.Peer reviewe

    Photonic Sintering of Oxide Ceramic Films: Effect of Colored Fe<sub>x</sub>O<sub>y</sub> Nanoparticle Pigments

    No full text
    Alumina and zirconia thin films modified with colored nano-FexOy pigments were sintered by the flash-lamp-annealing method. We selected a nano α-Al2O3 and micron α-Al2O3 bimodal mixture as the base precursor material, and we doped it with 5 vol% of FexOy red/brown/black/yellow pigments. The coatings were deposited from nanoparticle dispersions both on glass and on flexible metal foil. The characteristics of the thin films obtained with the use of various additives were compared, including the surface morphologies, optical properties, crystallinities, and structures. Flash lamp annealing was applied with the maximum total energy density of 130 J/cm2 and an overall annealing time of 7 s. Based on the simulated temperature profiles and electron-microscopy results, a maximum annealing temperature of 1850 °C was reached for the red Al2O3: Fe2O3 ceramic film. The results show that red α-Fe2O3 pigments allow for the achievement of maximum layer absorption, which is effective for flash lamp sintering. It was also possible to use the selected red α-Fe2O3 particles for the flash-lamp-assisted sintering of ZrO2 on a 30 µm-thin flexible stainless-steel substrate

    In situ Lithiated ALD Niobium Oxide for Improved Long Term Cycling of Layered Oxide Cathodes: A Thin-Film Model Study

    No full text
    Protective coatings applied to cathodes help to overcome interface stability issues and extend the cycle life of Li-ion batteries. However, within 3D cathode composites it is difficult to isolate the effect of the coating because of the additives and non-ideal interfaces. In this study we investigate niobium oxide (NbOx) as cathode coating in a thin-film model system, which provides simple access to the cathode-coating-electrolyte interface. The conformal NbOx coating was applied by atomic layer deposition (ALD) onto thin-film LiCoO2 cathodes. The cathode/coating stacks were annealed to lithiate the NbOx and ensure sufficient ionic conductivity. A range of different coating thicknesses were investigated to improve the electrochemical cycling with respect to the uncoated cathode. At a NbOx thickness of 30 nm, the cells retained 80% of the initial capacity after 493 cycles at 10 C, more than doubling the cycle life of the uncoated cathode film. At the same thickness, the coating also showed a positive impact on the rate performance of the cathode: 47% of the initial capacity was accessible even at ultrahigh charge-discharge rates of 100 C. Using impedance spectroscopy measurements, we found that the enhanced performance is due to suppressed interfacial resistance growth during cycling. Elemental analysis using TOF-SIMS and XPS further revealed a bulk and surface contribution of the NbOx coating. These results show that in situ lithiated ALD NbOx can significantly improve the performance of layered oxide cathodes by enhancing interfacial charge transfer and inhibiting surface degradation of the cathode, resulting in better rate performance and cycle life.</p
    corecore