11,849 research outputs found
Early postnatal development of corpus callosum and corticospinal white matter assessed with quantitative tractography
pre-printBACKGROUND AND PURPOSE: The early postnatal period is perhaps the most dynamic phase of white matter development. We hypothesized that the early postnatal development of the corpus callosum and corticospinal tracts could be studied in unsedated healthy neonates by using novel approaches to diffusion tensor imaging (DTI) and quantitative tractography. MATERIALS AND METHODS: Isotropic 2 x 2 x 2 mm3 DTI and structural images were acquired from 47 healthy neonates. DTI and structural images were coregistered and fractional anisotropy (FA), mean diffusivity (MD), and normalized T1-weighted (T1W) and T2-weighted (T2W) signal intensities were determined in central midline and peripheral cortical regions of the white matter tracts of the genu and splenium of the corpus callosum and the central midbrain and peripheral cortical regions of the corticospinal tracts by using quantitative tractography. RESULTS: We observed that central regions exhibited lower MD, higher FA values, higher T1W intensity, and lower T2W intensity than peripheral cortical regions. As expected, MD decreased, FA increased, and T2W signal intensity decreased with increasing age in the genu and corticospinal tract, whereas there was no significant change in T1W signal intensity. The central midline region of the splenium fiber tract has a unique pattern, with no change in MD, FA, or T2W signal intensity with age, suggesting different growth trajectory compared with the other tracts. FA seems to be more dependent on tract organization, whereas MD seems to be more sensitive to myelination. CONCLUSIONS: Our novel approach may detect small regional differences and age-related changes in the corpus callosum and corticospinal white matter tracts in unsedated healthy neonates and may be used for future studies of pediatric brain disorders that affect developing white matter
Electron Transfer in Donor-Acceptor Systems: Many-Particle Effects and Influence of Electronic Correlations
We investigate electron transfer processes in donor-acceptor systems with a
coupling of the electronic degrees of freedom to a common bosonic bath. The
model allows to study many-particle effects and the influence of the local
Coulomb interaction U between electrons on donor and acceptor sites. Using the
non-perturbative numerical renormalization group approach we find distinct
differences between the electron transfer characteristics in the single- and
two-particle subspaces. We calculate the critical electron-boson coupling
alpha_c as a function of and show results for density-density correlation
functions in the whole parameter space. The possibility of many-particle
(bipolaronic) and Coulomb-assisted transfer is discussed.Comment: 4 pages, 4 figure
Contraction of broken symmetries via Kac-Moody formalism
I investigate contractions via Kac-Moody formalism. In particular, I show how
the symmetry algebra of the standard 2-D Kepler system, which was identified by
Daboul and Slodowy as an infinite-dimensional Kac-Moody loop algebra, and was
denoted by , gets reduced by the symmetry breaking term,
defined by the Hamiltonian For this I
define two symmetry loop algebras , by
choosing the `basic generators' differently. These
can be mapped isomorphically onto subalgebras of , of
codimension 2 or 3, revealing the reduction of symmetry. Both factor algebras
, relative to the corresponding
energy-dependent ideals , are isomorphic to
and for , respectively, just as for the
pure Kepler case. However, they yield two different non-standard contractions
as , namely to the Heisenberg-Weyl algebra or to an abelian Lie algebra, instead of the Euclidean algebra
for the pure Kepler case. The above example suggests a
general procedure for defining generalized contractions, and also illustrates
the {\em `deformation contraction hysteresis'}, where contraction which involve
two contraction parameters can yield different contracted algebras, if the
limits are carried out in different order.Comment: 21 pages, 1 figur
The Physical Basis for Long-lived Electronic Coherence in Photosynthetic Light Harvesting Systems
The physical basis for observed long-lived electronic coherence in
photosynthetic light-harvesting systems is identified using an analytically
soluble model. Three physical features are found to be responsible for their
long coherence lifetimes: i) the small energy gap between excitonic states, ii)
the small ratio of the energy gap to the coupling between excitonic states, and
iii) the fact that the molecular characteristics place the system in an
effective low temperature regime, even at ambient conditions. Using this
approach, we obtain decoherence times for a dimer model with FMO parameters of
160 fs at 77 K and 80 fs at 277 K. As such, significant
oscillations are found to persist for 600 fs and 300 fs, respectively, in
accord with the experiment and with previous computations. Similar good
agreement is found for PC645 at room temperature, with oscillations persisting
for 400 fs. The analytic expressions obtained provide direct insight into the
parameter dependence of the decoherence time scales.Comment: 5 figures; J. Phys. Chem. Lett. (2011
Internet-based framework to support integration of the customer in the design of customizable products
Integration of customers is a necessary element to design and produce customer centric products. Design tools and methodologies need to be altered to accommodate customers into the process of designing customized products. In the current paper a mass customization framework is presented, that uses computer-aided design (CAD) and finiteelement-based optimization tools to integrate the customer into the design process via the internet. A mass customization template for generating optimized user-customized products is also presented. The capability of the system is demonstrated by a case study on customization of bicycle frames.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Pacifying Disruptive Subjects: Police violence and anti-fracking protests
This article considers the policing of protests against “fracking” at Barton Moss, Salford, Greater Manchester between November 2013 and April 2014. The article seeks to make sense of the policing response to the protest camp established at the Barton Moss site and to consider what the policing of anti-fracking protests reveals about state responses to resistance in the current era. The article begins by sketching out the background to fracking in the UK and to the specific protest at Barton Moss. It then provides some detail about the nature of policing experienced at the camp during its five month operation before considering how the policing of anti-fracking protests – and protest policing more generally – need to be considered in relation to the general function of police . To do this we draw upon the concept of pacification to consider both the destructive and productive effects of the exercise of police power and suggest that this concept, and the reorientation of critical policing studies that it demands, are essential for understanding police and state violence in the contemporary liberal democracy
Calculation of the unitary part of the Bures measure for N-level quantum systems
We use the canonical coset parameterization and provide a formula with the
unitary part of the Bures measure for non-degenerate systems in terms of the
product of even Euclidean balls. This formula is shown to be consistent with
the sampling of random states through the generation of random unitary
matrices
Magic Supergravities, N= 8 and Black Hole Composites
We present explicit U-duality invariants for the R, C, Q, O$ (real, complex,
quaternionic and octonionic) magic supergravities in four and five dimensions
using complex forms with a reality condition. From these invariants we derive
an explicit entropy function and corresponding stabilization equations which we
use to exhibit stationary multi-center 1/2 BPS solutions of these N=2 d=4
theories, starting with the octonionic one with E_{7(-25)} duality symmetry. We
generalize to stationary 1/8 BPS multicenter solutions of N=8, d=4
supergravity, using the consistent truncation to the quaternionic magic N=2
supergravity. We present a general solution of non-BPS attractor equations of
the STU truncation of magic models. We finish with a discussion of the
BPS-non-BPS relations and attractors in N=2 versus N= 5, 6, 8.Comment: 33 pages, references added plus brief outline at end of introductio
PopTract: Population-Based Tractography
White matter fiber tractography plays a key role in the in vivo understanding of brain circuitry. For tract-based comparison of a population of images, a common approach is to first generate an atlas by averaging, after spatial normalization, all images in the population, and then perform tractography using the constructed atlas. The reconstructed fiber trajectories form a common geometry onto which diffusion properties of each individual subject can be projected based on the corresponding locations in the subject native space. However, in the case of high angular resolution diffusion imaging (HARDI), where modeling fiber crossings is an important goal, the above-mentioned averaging method for generating an atlas results in significant error in the estimation of local fiber orientations and causes a major loss of fiber crossings. These limitatitons have significant impact on the accuracy of the reconstructed fiber trajectories and jeopardize subsequent tract-based analysis. As a remedy, we present in this paper a more effective means of performing tractography at a population level. Our method entails determining a bipolar Watson distribution at each voxel location based on information given by all images in the population, giving us not only the local principal orientations of the fiber pathways, but also confidence levels of how reliable these orientations are across subjects. The distribution field is then fed as an input to a probabilistic tractography framework for reconstructing a set of fiber trajectories that are consistent across all images in the population. We observe that the proposed method, called PopTract, results in significantly better preservation of fiber crossings, and hence yields better trajectory reconstruction in the atlas space
- …