25 research outputs found

    Kinetic Analysis of the Thermal Degradation of Polystyrene-Montmorillonite Nanocomposite

    Get PDF
    Nanocomposites exhibit a combination of unique properties, such as increased heat distortion temperature, reduced permeability, reduced flammability and improved mechanical properties. In this work, a polystyrene (PS) clay nanocomposite was prepared via bulk polymerization using a novel organically modified montmorillonite (MMT). The organic-modifier is the N,N-dimethyl-n-hexadecyl-(4-vinylbenzyl) ammonium chloride (VB16). The thermal stability of PS–VB16 compared to pure PS is examined in pyrolytic and thermo-oxidative conditions. It is then studied using a kinetic analysis. It is shown that the stability of PS is significantly increased in the presence of clay. The thermal behavior of PS and PS nanocomposite is modeled and simulated. A very good agreement between experimental and simulated curves both in dynamic and isothermal conditions is observed. Using kinetic analysis associated to the reaction to fire of PS nanocomposite simulated in a cone calorimeter, the peak of heat release rate is half that of virgin PS, it is suggested that the clay acts as a char promoter slowing down the degradation and providing a protective barrier to the nanocomposite. The combination of these two effects is an important factor lowering the HRR

    Further Studies on Fire Retardant Polystyrene by Friedel–Crafts Chemistry

    Get PDF
    The combination of a copolymer of 4-vinylbenzyl alcohol and styrene with 2-ethylhexyldiphenylphosphate (DPP) and with metal chlorides has been studied by TGA, radiative gasification, Cone Calorimetry, and oxygen index measurements. Evidence is presented in support of a cross-linking reaction with the additives and the copolymer, which proceeds through a Friedel–Crafts mechanism. This approach reduces the peak heat release rate (HRR) by 60% as measured in the Cone Calorimeter. There is a significant reduction in the mass loss rate during the thermal degradation, and evidence of char formation is observed in the radiative gasification experiments

    Investigation of nanodispersion in polystyrene-montmorillonite nanocomposites by solid state NMR

    Get PDF
    Nanocomposites result from combinations of materials with vastly different properties in the nanometer scale. These materials exhibit many unique properties such as improved thermal stability, reduced flammability, and improved mechanical properties. Many of the properties associated with polymer–clay nanocomposites are a function of the extent of exfoliation of the individual clay sheets or the quality of the nanodispersion. This work demonstrates that solid-state NMR can be used to characterize, quantitatively, the nanodispersion of variously modified montmorillonite (MMT) clays in polystyrene (PS) matrices. The direct influence of the paramagnetic Fe3, embedded in the aluminosilicate layers of MMT, on polymer protons within about 1 nm from the clay surfaces creates relaxation sources, which, via spin diffusion, significantly shorten the overall proton longitudinal relaxation time (T1 H). Deoxygenated samples were used to avoid the particularly strong contribution to the T1 H of PS from paramagnetic molecular oxygen. We used T1 H as an indicator of the nanodispersion of the clay in PS. This approach correlated reasonably well with X-ray diffraction and transmission electron microscopy (TEM) data. A model for interpreting the saturation-recovery data is proposed such that two parameters relating to the dispersion can be extracted. The first parameter, f, is the fraction of the potentially available clay surface that has been transformed into polymer–clay interfaces. The second parameter is a relative measure of the homogeneity of the dispersion of these actual polymer–clay interfaces. Finally, a quick assay of T1 H is reported for samples equilibrated with atmospheric oxygen. Included are these samples as well as 28 PS/MMT nanocomposite samples prepared by extrusion. These measurements are related to the development of highthroughput characterization techniques. This approach gives qualitative indications about dispersion; however, the more time-consuming analysis, of a few deoxygenated samples from this latter set, offers significantly greater insight into the clay dispersion. A second, probably superior, rapid-analysis method, applicable to oxygen-containing samples, is also demonstrated that should yield a reasonable estimate of the f parameter. Thus, for PS/MMT nanocomposites, one has the choice of a less complete NMR assay of dispersion that is significantly faster than TEM analysis, versus a slower and more complete NMR analysis with sample times comparable to TEM, information rivaling that of TEM, and a substantial advantage that this is a bulk characterization method. © 2003 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 41: 3188–3213, 200

    Char-forming behavior of nanofibrillated cellulose treated with \u3ci\u3eglycidyl phenyl\u3c/i\u3e POSS

    Get PDF
    Cellulose-reinforced composites have received much attention due to their structural reinforcing, light weight, biodegradable, non-toxic, low cost and recyclable characteristics. However, the tendency for cellulose to aggregate and its poor dispersion in many polymers, such as polystyrene, continues to be one of the most challenging roadblocks to large scale production and use of cellulose-polymer composites. In this study, nanofibrillated cellulose (NFC) is modified using GlycidylPhenyl-POSS (a polyhedral oligomeric silsesquioxane). The product yield, morphology, and crystallinity are characterized using a variety of spectroscopy and microscopy techniques. Thermal analyses are performed using thermal gravimetric analysis and pyrolysis combustion flow calorimetry

    High-Throughput Techniques for the Evaluation of Fire Retardancy

    No full text
    As new flame retardant (FR) approaches are developed they must be evaluated with conventional FR additives, processing additives, stabilizers, and fillers. In most cases this is done in a number of polymers, and a variety of processing conditions also must be optimized. Thus the development of new FR methods is a multi-parameter problem. A full-factorial approach to developing the structure–property relationships of interest requires numerous experiments and is prohibitively labor intensive; additional methods in which the composition space can be rapidly sampled and evaluated are necessary. Several new high throughput approaches are described herein which have been correlated with conventional flammability tests

    High Throughput Methods for Polymer Nanocomposites Research: Extrusion, NMR Characterization and Flammability Property Screening

    No full text
    A large number of parameters influence polymer-nanocomposite performance and developing a detailed understanding of these materials involves investigation of a large volume of the associated multi-dimensional property space. This multi-dimensional parameter space for polymer-nanocomposites consists of the obvious list of different material types under consideration, such as polymer and nano-additive, but also includes interphase surface chemistry, and processing conditions. This article presents combinatorial library design and high-throughput screening methods for polymer nanocomposites intended as flame-resistant materials. Here, we present the results of using a twin-screwn extruder to create composition-gradient library strips of polymer nanocomposites that are screened with a solid-state NMR method to rapidly evaluate the optimal processing conditions for achieving nanocomposite dispersion. In addition, we present a comparison of a new rapid Cone calorimetry method to conventional Cone calorimetry and to the gradient heat-flux flame spread method

    Bionanocomposites: Differential Effects of Cellulose Nanocrystals on Protein Diblock Copolymers

    No full text
    We investigate the effects of mixing a colloidal suspension of tunicate-derived cellulose nanocrystals (t-CNCs) with aqueous colloidal suspensions of two protein diblock copolymers, EC and CE, which bear two different self-assembling domains (SADs) derived from elastin (E) and the coiled-coil region of cartilage oligomeric matrix protein (C). The resulting aqueous mixtures reveal improved mechanical integrity for the CE+t-CNC mixture, which exhibits an elastic gel network. This is in contrast to EC+t-CNC, which does not form a gel, indicating that block orientation influences the ability to interact with t-CNCs. Surface analysis and interfacial characterization indicate that the differential mechanical properties of the two samples are due to the prevalent display of the E domain by CE, which interacts more with t-CNCs leading to a stronger network with t-CNCs. On the other hand, EC, which is predominantly C-rich on its surface, does not interact as much with t-CNCs. This suggests that the surface characteristics of the protein polymers, due to folding and self-assembly, are important factors for the interactions with t-CNCs, and a significant influence on the overall mechanical properties. These results have interesting implications for the understanding of cellulose hydrophobic interactions, natural biomaterials and the development of artificially assembled bionanocomposites
    corecore