582 research outputs found

    Saturation Diving Alters Folate Status and Biomarkers of DNA Damage and Repair

    Get PDF
    Exposure to oxygen-rich environments can lead to oxidative damage, increased body iron stores, and changes in status of some vitamins, including folate. Assessing the type of oxidative damage in these environments and determining its relationships with changes in folate status are important for defining nutrient requirements and designing countermeasures to mitigate these effects. Responses of humans to oxidative stressors were examined in participants undergoing a saturation dive in an environment with increased partial pressure of oxygen, a NASA Extreme Environment Mission Operations mission. Six participants completed a 13-d saturation dive in a habitat 19 m below the ocean surface near Key Largo, FL. Fasting blood samples were collected before, twice during, and twice after the dive and analyzed for biochemical markers of iron status, oxidative damage, and vitamin status. Body iron stores and ferritin increased during the dive (P<0.001), with a concomitant decrease in RBC folate (P<0.001) and superoxide dismutase activity (P<0.001). Folate status was correlated with serum ferritin (Pearson r = −0.34, P<0.05). Peripheral blood mononuclear cell poly(ADP-ribose) increased during the dive and the increase was significant by the end of the dive (P<0.001); γ-H2AX did not change during the mission. Together, the data provide evidence that when body iron stores were elevated in a hyperoxic environment, a DNA damage repair response occurred in peripheral blood mononuclear cells, but double-stranded DNA damage did not. In addition, folate status decreases quickly in this environment, and this study provides evidence that folate requirements may be greater when body iron stores and DNA damage repair responses are elevated

    Pedestrian Road Traffic Injuries in Urban Peruvian Children and Adolescents: Case Control Analyses of Personal and Environmental Risk Factors

    Get PDF
    BACKGROUND: Child pedestrian road traffic injuries (RTIs) are an important cause of death and disability in poorer nations, however RTI prevention strategies in those countries largely draw upon studies conducted in wealthier countries. This research investigated personal and environmental risk factors for child pedestrian RTIs relevant to an urban, developing world setting. METHODS: This is a case control study of personal and environmental risk factors for child pedestrian RTIs in San Juan de Miraflores, Lima, PerĂş. The analysis of personal risk factors included 100 cases of serious pedestrian RTIs and 200 age and gender matched controls. Demographic, socioeconomic, and injury data were collected. The environmental risk factor study evaluated vehicle and pedestrian movement and infrastructure at the sites in which 40 of the above case RTIs occurred and 80 control sites. FINDINGS: After adjustment, factors associated with increased risk of child pedestrian RTIs included high vehicle volume (OR 7.88, 95%CI 1.97-31.52), absent lane demarcations (OR 6.59, 95% CI 1.65-26.26), high vehicle speed (OR 5.35, 95%CI 1.55-18.54), high street vendor density (OR 1.25, 95%CI 1.01-1.55), and more children living in the home (OR 1.25, 95%CI 1.00-1.56). Protective factors included more hours/day spent in school (OR 0.52, 95%CI 0.33-0.82) and years of family residence in the same home (OR 0.97, 95%CI 0.95-0.99). CONCLUSION: Reducing traffic volumes and speeds, limiting the number of street vendors on a given stretch of road, and improving lane demarcation should be evaluated as components of child pedestrian RTI interventions in poorer countries

    The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis.

    Get PDF
    Global tuberculosis incidence has declined marginally over the past decade, and tuberculosis remains out of control in several parts of the world including Africa and Asia. Although tuberculosis control has been effective in some regions of the world, these gains are threatened by the increasing burden of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. XDR tuberculosis has evolved in several tuberculosis-endemic countries to drug-incurable or programmatically incurable tuberculosis (totally drug-resistant tuberculosis). This poses several challenges similar to those encountered in the pre-chemotherapy era, including the inability to cure tuberculosis, high mortality, and the need for alternative methods to prevent disease transmission. This phenomenon mirrors the worldwide increase in antimicrobial resistance and the emergence of other MDR pathogens, such as malaria, HIV, and Gram-negative bacteria. MDR and XDR tuberculosis are associated with high morbidity and substantial mortality, are a threat to health-care workers, prohibitively expensive to treat, and are therefore a serious public health problem. In this Commission, we examine several aspects of drug-resistant tuberculosis. The traditional view that acquired resistance to antituberculous drugs is driven by poor compliance and programmatic failure is now being questioned, and several lines of evidence suggest that alternative mechanisms-including pharmacokinetic variability, induction of efflux pumps that transport the drug out of cells, and suboptimal drug penetration into tuberculosis lesions-are likely crucial to the pathogenesis of drug-resistant tuberculosis. These factors have implications for the design of new interventions, drug delivery and dosing mechanisms, and public health policy. We discuss epidemiology and transmission dynamics, including new insights into the fundamental biology of transmission, and we review the utility of newer diagnostic tools, including molecular tests and next-generation whole-genome sequencing, and their potential for clinical effectiveness. Relevant research priorities are highlighted, including optimal medical and surgical management, the role of newer and repurposed drugs (including bedaquiline, delamanid, and linezolid), pharmacokinetic and pharmacodynamic considerations, preventive strategies (such as prophylaxis in MDR and XDR contacts), palliative and patient-orientated care aspects, and medicolegal and ethical issues

    Post-mortem histopathology underlying β-amyloid PET imaging following flutemetamol F 18 injection

    Get PDF
    In vivo imaging of fibrillar β-amyloid deposits may assist clinical diagnosis of Alzheimer's disease (AD), aid treatment selection for patients, assist clinical trials of therapeutic drugs through subject selection, and be used as an outcome measure. A recent phase III trial of [(18)F]flutemetamol positron emission tomography (PET) imaging in 106 end-of-life subjects demonstrated the ability to identify fibrillar β-amyloid by comparing in vivo PET to post-mortem histopathology. Post-mortem analyses demonstrated a broad and continuous spectrum of β-amyloid pathology in AD and other dementing and non-dementing disease groups. The GE067-026 trial demonstrated 91% sensitivity and 90% specificity of [(18)F]flutemetamol PET by majority read for the presence of moderate or frequent plaques. The probability of an abnormal [(18)F]flutemetamol scan increased with neocortical plaque density and AD diagnosis. All dementia cases with non-AD neurodegenerative diseases and those without histopathological features of β-amyloid deposits were [(18)F]flutemetamol negative. Majority PET assessments accurately reflected the amyloid plaque burden in 90% of cases. However, ten cases demonstrated a mismatch between PET image interpretations and post-mortem findings. Although tracer retention was best associated with amyloid in neuritic plaques, amyloid in diffuse plaques and cerebral amyloid angiopathy best explain three [(18)F]flutemetamol positive cases with mismatched (sparse) neuritic plaque burden. Advanced cortical atrophy was associated with the seven false negative [(18)F]flutemetamol images. The interpretation of images from pathologically equivocal cases was associated with low reader confidence and inter-reader agreement. Our results support that amyloid in neuritic plaque burden is the primary form of β-amyloid pathology detectable with [(18)F]flutemetamol PET imaging
    • …
    corecore