55 research outputs found

    Subcellular localisation modulates ubiquitylation and degradation of Ascl1.

    Get PDF
    The proneural transcription factor Ascl1 is a master regulator of neurogenesis, coordinating proliferation and differentiation in the central nervous system. While its expression is well characterised, post-translational regulation is much less well understood. Here we demonstrate that a population of chromatin-bound Ascl1 can be found associated with short chains of ubiquitin while cytoplasmic Ascl1 harbours much longer ubiquitin chains. Only cytoplasmic ubiquitylation targets Ascl1 for destruction, which occurs by conjugation of ubiquitin to lysines in the basic helix-loop-helix domain of Ascl1 and requires the E3 ligase Huwe1. In contrast, chromatin-bound Ascl1 associated with short ubiquitin-chains, which can occur on lysines within the N-terminal region or the bHLH domain and is not mediated by Huwe1, is not targeted for ubiquitin-mediated destruction. We therefore offer further insights into post-translational regulation of Ascl1, highlighting complex regulation of ubiquitylation and degradation in the cytoplasm and on chromatin.This work was funded by MRC Research Grants (MR/K018329/1 and MR/L021129/1) and received core support from Wellcome Trust and MRC Cambridge Stem Cell Institute

    Neurogenin3 phosphorylation controls reprogramming efficiency of pancreatic ductal organoids into endocrine cells

    Get PDF
    β-cell replacement has been proposed as an effective treatment for some forms of diabetes, and in vitro methods for β-cell generation are being extensively explored. A potential source of β-cells comes from fate conversion of exocrine pancreatic cells into the endocrine lineage, by overexpression of three regulators of pancreatic endocrine formation and β-cell identity, Ngn3, Pdx1 and MafA. Pancreatic ductal organoid cultures have recently been developed that can be expanded indefinitely, while maintaining the potential to differentiate into the endocrine lineage. Here, using mouse pancreatic ductal organoids, we see that co-expression of Ngn3, Pdx1 and MafA are required and sufficient to generate cells that express insulin and resemble β-cells transcriptome-wide. Efficiency of β-like cell generation can be significantly enhanced by preventing phosphorylation of Ngn3 protein and further augmented by conditions promoting differentiation. Taken together, our new findings underline the potential of ductal organoid cultures as a source material for generation of β-like cells and demonstrate that post-translational regulation of reprogramming factors can be exploited to enhance β-cell generation

    Transcriptional Mechanisms of Proneural Factors and REST in Regulating Neuronal Reprogramming of Astrocytes

    Get PDF
    © 2015 Elsevier Inc. Direct lineage reprogramming induces dramatic shifts in cellular identity, employing poorly understood mechanisms. Recently, we demonstrated that expression of Neurog2 or Ascl1 in postnatal mouse astrocytes generates glutamatergic or GABAergic neurons. Here, we take advantage of this model to study dynamics of neuronal cell fate acquisition at the transcriptional level. We found that Neurog2 and Ascl1 rapidly elicited distinct neurogenic programs with only a small subset of shared target genes. Within this subset, only NeuroD4 could by itself induce neuronal reprogramming in both mouse and human astrocytes, while co-expression with Insm1 was required for glutamatergic maturation. Cultured astrocytes gradually became refractory to reprogramming, in part by the repressor REST preventing Neurog2 from binding to the NeuroD4 promoter. Notably, in astrocytes refractory to Neurog2 activation, the underlying neurogenic program remained amenable to reprogramming by exogenous NeuroD4. Our findings support a model of temporal hierarchy for cell fate change during neuronal reprogramming

    New Fluorinated 1,2,4-Benzothiadiazine 1,1-Dioxides: Discovery of an Orally Active Cognitive Enhancer Acting through Potentiation of the 2-Amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic Acid Receptors

    Full text link
    In the search of a potent cognitive enhancer, a series of 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides have been synthesized and evaluated as positive allosteric modulators of the AMPA receptors. In the present work, we focused our efforts on the insertion of mono- or polyfluoro- substituted alkyl chains at the 4-position of the thiadiazine ring in an attempt to enhance the pharmacokinetic behavior of previously described compounds. Among all the described compounds, 7-chloro-4-(2-fluoroethyl)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide, 12b, was shown to exert a strong activity on AMPA receptors in vitro and a marked cognitive-enhancing effect in vivo after oral administration to Wistar rats. Considering its in vivo activity, the metabolic degradation of 12b was studied and compared to that of its nonfluorinated analogue 9b. Taken together, results of this study clearly validated the positive impact of the fluorine atom on the alkyl chain at the 4-position of benzothiadiazine dioxides on activity and metabolic stability

    Élections pour le conseil supérieur de l’instruction publique

    No full text
    Gillotin . Élections pour le conseil supérieur de l’instruction publique. In: Manuel général de l'instruction primaire : journal hebdomadaire des instituteurs. 59e année, tome 28, 1892. pp. 1-4

    A study of p53-mediated chemosensitivity

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The ASPP proteins complex and cooperate with p300 to modulate the transcriptional activity of p53.

    No full text
    Understanding how p53 is able to specifically respond to particular stress signals and regulate many different signalling pathways remains a challenge. Several studies have demonstrated that p53's interactions with different protein partners are essential for it to be able to coordinate specific responses. In particular, the apoptotic pathway is regulated by p53 in cooperation with the Apoptosis Stimulating Proteins of p53 (ASPP) proteins. In this study, we showed that the ASPP proteins are able to bind and cooperate with p300, a well defined co-factor of p53, to selectively regulate p53's transcriptional activity on promoters such as p53-inducible gene 3 but not on p21waf1. This is the first demonstration that the ASPPs can function together with p300 in regulating the transcriptional activity of p53

    The ASPP proteins complex and cooperate with p300 to modulate the transcriptional activity of p53

    Get PDF
    Understanding how p53 is able to specifically respond to particular stress signals and regulate many different signalling pathways remains a challenge. Several studies have demonstrated that p53's interactions with different protein partners are essential for it to be able to coordinate specific responses. In particular, the apoptotic pathway is regulated by p53 in cooperation with the Apoptosis Stimulating Proteins of p53 (ASPP) proteins. In this study, we showed that the ASPP proteins are able to bind and cooperate with p300, a well defined co-factor of p53, to selectively regulate p53's transcriptional activity on promoters such as p53-inducible gene 3 but not on p21waf1. This is the first demonstration that the ASPPs can function together with p300 in regulating the transcriptional activity of p53. © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved

    A new age in understanding adult hippocampal neurogenesis in Alzheimer’s disease

    No full text
    Several lines of evidence have established that proliferation and differentiation of neural stem cells into neurons within the sub-granular zone of the dentate gyrus, a process named adult hippocampal neurogenesis, contribute to maintaining healthy cognitive functions throughout life. The rate of adult hippocampal neurogenesis decreases with aging and a premature impairment of adult hippocampal neurogenesis has been observed both in animal models of Alzheimer’s disease and human post-mortem tissues. The causal relationship between adult hippocampal neurogenesis and the development of Alzheimer’s disease pathology has, however, not been established. This is partly due to the limitation of recapitulating the development of Alzheimer’s disease pathology in rodent models and the lack of translatable biomarkers to identify tractable targets in humans. While it is tempting to postulate that adult hippocampal neurogenesis could be leveraged to improve cognitive deficits in Alzheimer’s disease, consensual results have yet to be reached to fully explore this hypothesis. In this review, we discuss how the recent progress in identifying molecular pathways in adult hippocampal neurogenesis provides a good framework to initiate strategies for drug-based intervention in neurodegenerative diseases, especially in Alzheimer’s disease. We outline how discrepancies in pre-clinical disease models and experimental methodology have resulted in contradictory findings and propose a shift towards using more translatable approaches to model neurogenesis in Alzheimer’s disease. In particular, we review how exploring novel experimental paradigms including the use of human induced pluripotent stem cells and more complex cell culture systems, as well as standardizing protocols used to investigate evidence of neurogenesis in human tissues, could deliver deeper mechanistic insights that would kick-start innovative drug discovery efforts to promote healthy aging and cellular rejuvenation
    corecore