3,705 research outputs found

    LDEF atomic oxygen fluence update

    Get PDF
    The definition of LDEF atomic oxygen exposure involves theoretical prediction of fluxes, modeling of shielding and scattering effects, and comparison of predicted with observed atomic oxygen effects on LDEF experiments. Work is proceeding as follows: atomic oxygen fluxes and fluences have been recalculated using a more detailed orbit prediction program; a micro-environments program is being developed to account for the effects of experiment geometry on atomic oxygen flux; and chemical and physical measurements are being made on copper grounding straps to verify correspondence between predicted exposures and observed surface property variations. These three areas of work are reported briefly

    LDEF microenvironments, observed and predicted

    Get PDF
    A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces

    Experimental data and model for the turbulent boundary layer on a convex, curved surface

    Get PDF
    Experiments were performed to determine how boundary layer turbulence is affected by strong convex curvature. The data gathered on the behavior of the Reynolds stress suggested the formulation of a simple turbulence model. Data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero. Two experiments were performed at delta/R approximately 0.10, and one at weaker curvature with delta/R approximately 0.05. Results show that after a sudden introduction of curvature the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. When the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions. A simple turbulence model, which was based on the theory that the Prandtl mixing length in the outer layer should scale on the velocity gradient layer, was shown to account for the slow recovery

    Solar exposure of LDEF experiment trays

    Get PDF
    Exposure to solar radiation is one of the primary causes of degradation of materials on spacecraft. Accurate knowledge of solar exposure is needed to evaluate the performance of materials carried on the Long Duration Exposure Facility (LDEF) during its nearly 6 year orbital flight. Presented here are tables and figures of calculated solar exposure for the experiment rows, longerons, and end bays of the spacecraft as functions of time in orbit. The data covers both direct solar and earth reflected radiation. Results are expressed in cumulative equivalent sun hours (CESH) or the hours of direct, zero incidence solar radiation that would cause the same irradiance of a surface. Space end bays received the most solar radiation, 14,000 CESH; earth end bays received the least, 4,500 CESH. Row locations received between 6,400 CESH and 11,200 CESH with rows facing either eastward or westward receiving the most radiation and rows facing northward or southward receiving the least

    Atomic oxygen exposure of LDEF experiment trays

    Get PDF
    Atomic oxygen exposures were determined analytically for rows, longerons, and end bays of the Long Duration Exposure Facility (LDEF). The calculations are based on an analytical model that accounts for the effects of thermal molecular velocity, atmospheric temperature, number density, spacecraft velocity, incidence angle, and atmospheric rotation on atomic oxygen flux. Results incorporate variations in solar activity, geomagnetic index, and orbital parameters occurring over the 6-year flight of the spacecraft. To facilitate use of the data, both detailed tabulations and summary charts for atomic oxygen fluences are presented

    Transition from KPZ to Tilted Interface Critical Behavior in a Solvable Asymmetric Avalanche Model

    Full text link
    We use a discrete-time formulation to study the asymmetric avalanche process [Phys. Rev. Lett. vol. 87, 084301 (2001)] on a finite ring and obtain an exact expression for the average avalanche size of particles as a function of toppling probabilities depending on parameters μ\mu and α\alpha. By mapping the model below and above the critical line onto driven interface problems, we show how different regimes of avalanches may lead to different types of critical interface behavior characterized by either annealed or quenched disorders and obtain exactly the related critical exponents which violate a well-known scaling relation when α≠2\alpha \ne 2.Comment: 10 page

    Calibration of colour gradient bias in shear measurement using HST/CANDELS data

    Get PDF
    Accurate shape measurements are essential to infer cosmological parameters from large area weak gravitational lensing studies. The compact diffraction-limited point-spread function (PSF) in space-based observations is greatly beneficial, but its chromaticity for a broad band observation can lead to new subtle effects that could hitherto be ignored: the PSF of a galaxy is no longer uniquely defined and spatial variations in the colours of galaxies result in biases in the inferred lensing signal. Taking Euclid as a reference, we show that this colourgradient bias (CG bias) can be quantified with high accuracy using available multi-colour Hubble Space Telescope (HST) data. In particular we study how noise in the HST observations might impact such measurements and find this to be negligible. We determine the CG bias using HST observations in the F606W and F814W filters and observe a correlation with the colour, in line with expectations, whereas the dependence with redshift is weak. The biases for individual galaxies are generally well below 1%, which may be reduced further using morphological information from the Euclid data. Our results demonstrate that CG bias should not be ignored, but it is possible to determine its amplitude with sufficient precision, so that it will not significantly bias the weak lensing measurements using Euclid data

    Operation of the computer model for microenvironment solar exposure

    Get PDF
    A computer model for microenvironmental solar exposure was developed to predict solar exposure to satellite surfaces which may shadow or reflect on one another. This document describes the technical features of the model as well as instructions for the installation and use of the program
    • …
    corecore