6,822 research outputs found
Analytical results for a Fokker-Planck equation in the small noise limit
We present analytical results for the lowest cumulants of a stochastic
process described by a Fokker-Planck equation with nonlinear drift. We show
that, in the limit of small fluctuations, the mean, the variance and the
covariance of the process can be expressed in compact form with the help of the
Lambert W function. As an application, we discuss the interplay of noise and
nonlinearity far from equilibrium.Comment: 5 pages, 4 figure
Symmetry Relations for Trajectories of a Brownian Motor
A Brownian Motor is a nanoscale or molecular device that combines the effects
of thermal noise, spatial or temporal asymmetry, and directionless input energy
to drive directed motion. Because of the input energy, Brownian motors function
away from thermodynamic equilibrium and concepts such as linear response
theory, fluctuation dissipation relations, and detailed balance do not apply.
The {\em generalized} fluctuation-dissipation relation, however, states that
even under strongly thermodynamically non-equilibrium conditions the ratio of
the probability of a transition to the probability of the time-reverse of that
transition is the exponent of the change in the internal energy of the system
due to the transition. Here, we derive an extension of the generalized
fluctuation dissipation theorem for a Brownian motor for the ratio between the
probability for the motor to take a forward step and the probability to take a
backward step
A unique facility for V/STOL aircraft hover testing
The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight
Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation
We present computer-assisted methods for analyzing stochastic models of gene
regulatory networks. The main idea that underlies this equation-free analysis
is the design and execution of appropriately-initialized short bursts of
stochastic simulations; the results of these are processed to estimate
coarse-grained quantities of interest, such as mesoscopic transport
coefficients. In particular, using a simple model of a genetic toggle switch,
we illustrate the computation of an effective free energy and of a
state-dependent effective diffusion coefficient that characterize an
unavailable effective Fokker-Planck equation. Additionally we illustrate the
linking of equation-free techniques with continuation methods for performing a
form of stochastic "bifurcation analysis"; estimation of mean switching times
in the case of a bistable switch is also implemented in this equation-free
context. The accuracy of our methods is tested by direct comparison with
long-time stochastic simulations. This type of equation-free analysis appears
to be a promising approach to computing features of the long-time,
coarse-grained behavior of certain classes of complex stochastic models of gene
regulatory networks, circumventing the need for long Monte Carlo simulations.Comment: 33 pages, submitted to The Journal of Chemical Physic
Sunflower Competition in Wheat
Wheat yield losses from various sunflower densities and durations of competition had not been determined previously. The objectives of the research in this article were to determine the influence of sunflower density, duration of competition and rate of control on wheat yield
P and S fertilizer reaction products in the seed-row as revealed by XANES spectroscopy
Non-Peer Reviewe
Stability of adhesion clusters under constant force
We solve the stochastic equations for a cluster of parallel bonds with shared
constant loading, rebinding and the completely dissociated state as an
absorbing boundary. In the small force regime, cluster lifetime grows only
logarithmically with bond number for weak rebinding, but exponentially for
strong rebinding. Therefore rebinding is essential to ensure physiological
lifetimes. The number of bonds decays exponentially with time for most cases,
but in the intermediate force regime, a small increase in loading can lead to
much faster decay. This effect might be used by cell-matrix adhesions to induce
signaling events through cytoskeletal loading.Comment: Revtex, 4 pages, 4 Postscript files include
Root rot of subterranean clover in W.A
Root rot of subterranean clover has occurred sporadically in the south west of Western Australia for a number of years.
In most seasons the disease has affected the clover paddocks of only a few farms, but in 1973 there was widespread pasture decline due to root rot in the South-West and south coastal districts.
At present the most promising approaches for minimising the effect of root rot appear to be the use of cultivation techniques and eventually the use of resistant varieties, or other pasture species
Error threshold in finite populations
A simple analytical framework to study the molecular quasispecies evolution
of finite populations is proposed, in which the population is assumed to be a
random combination of the constiyuent molecules in each generation,i.e.,
linkage disequilibrium at the population level is neglected. In particular, for
the single-sharp-peak replication landscape we investigate the dependence of
the error threshold on the population size and find that the replication
accuracy at threshold increases linearly with the reciprocal of the population
size for sufficiently large populations. Furthermore, in the deterministic
limit our formulation yields the exact steady-state of the quasispecies model,
indicating then the population composition is a random combination of the
molecules.Comment: 14 pages and 4 figure
Investigation of potential diseases associated with Northern Territory mammal declines
There is compelling evidence of broad-scale declines in populations of small terrestrial native mammals in northern Australia, including the Top End of the Northern Territory (NT) over the past 20 years. Causes under consideration include changed fire regimes, introduced fauna (including predators) and disease. To date information on health and disease in northern Australian mammals has been limited.
Disease is increasingly recognised as a primary driver of some wildlife population declines and extinctions e.g., Tasmanian devil facial tumour disease, white nose syndrome in bats and chytrid fungus in amphibians.
Disease has been identified as a risk factor for extinction in declining and fragmented wildlife populations globally, particularly in situations of increased environmental stressors, changing ecosystems, arrival of new vertebrate threats or climate change. Unless wild populations are studied in detail over long periods of time, the effects of disease are easily overlooked and may be difficult to determine.
This study is the largest and most comprehensive study of health and disease in small mammals in northern Australia and is one of a small number of studies worldwide to have approached investigation of wildlife populations in this comprehensive manner
- …