561 research outputs found

    Rainfall structural modelling in urban hydrology

    Get PDF
    International audienceThe aim of this work was to study the possibility of modeling a rainfall using an urban rain gauge network. This kind of network is quite new. But their existing will lead to a kind of modeling in which both space and time variations are taken into account; a rainfall is a set of homogenous subsets

    Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order

    Full text link
    The gravitational radiation from point particle binaries is computed at the third post-Newtonian (3PN) approximation of general relativity. Three previously introduced ambiguity parameters, coming from the Hadamard self-field regularization of the 3PN source-type mass quadrupole moment, are consistently determined by means of dimensional regularization, and proved to have the values xi = -9871/9240, kappa = 0 and zeta = -7/33. These results complete the derivation of the general relativistic prediction for compact binary inspiral up to 3.5PN order, and should be of use for searching and deciphering the signals in the current network of gravitational wave detectors.Comment: 4 pages in 2-column format, LaTeX 2e, REVTeX 4, no figur

    O 2

    Full text link

    Product-Closing Approximation for Ranking-based Choice Network Revenue Management

    Get PDF
    Most recent research in network revenue management incorporates choice behavior that models the customers' buying logic. These models are consequently more complex to solve, but they return a more robust policy that usually generates better expected revenue than an independent-demand model. Choice network revenue management has an exact dynamic programming formulation that rapidly becomes intractable. Approximations have been developed, and many of them are based on the multinomial logit demand model. However, this parametric model has the property known as the independence of irrelevant alternatives and is often replaced in practice by a nonparametric model. We propose a new approximation called the product closing program that is specifically designed for a ranking-based choice model representing a nonparametric demand. Numerical experiments show that our approach quickly returns expected revenues that are slightly better than those of other approximations, especially for large instances. Our approximation can also supply a good initial solution for other approaches

    Ammonia Exchange and Photorespiration in Chlamydomonas

    Full text link

    Dimensional regularization of the third post-Newtonian gravitational wave generation from two point masses

    Full text link
    Dimensional regularization is applied to the computation of the gravitational wave field generated by compact binaries at the third post-Newtonian (3PN) approximation. We generalize the wave generation formalism from isolated post-Newtonian matter systems to d spatial dimensions, and apply it to point masses (without spins), modelled by delta-function singularities. We find that the quadrupole moment of point-particle binaries in harmonic coordinates contains a pole when epsilon = d-3 -> 0 at the 3PN order. It is proved that the pole can be renormalized away by means of the same shifts of the particle world-lines as in our recent derivation of the 3PN equations of motion. The resulting renormalized (finite when epsilon -> 0) quadrupole moment leads to unique values for the ambiguity parameters xi, kappa and zeta, which were introduced in previous computations using Hadamard's regularization. Several checks of these values are presented. These results complete the derivation of the gravitational waves emitted by inspiralling compact binaries up to the 3.5PN level of accuracy which is needed for detection and analysis of the signals in the gravitational-wave antennas LIGO/VIRGO and LISA.Comment: 60 pages, LaTeX 2e, REVTeX 4, 10 PostScript files (1 figure and 9 Young tableaux used in the text

    Light deflection by gravitational waves from localized sources

    Get PDF
    We study the deflection of light (and the redshift, or integrated time delay) caused by the time-dependent gravitational field generated by a localized material source lying close to the line of sight. Our calculation explicitly takes into account the full, near-zone, plus intermediate-zone, plus wave-zone, retarded gravitational field. Contrary to several recent claims in the literature, we find that the deflections due to both the wave-zone 1/r gravitational wave and the intermediate-zone 1/r^2 retarded fields vanish exactly. The leading total time-dependent deflection caused by a localized material source, such as a binary system, is proven to be given by the quasi-static, near-zone quadrupolar piece of the gravitational field, and therefore to fall off as the inverse cube of the impact parameter.Comment: 12 pages, REVTeX 3.0, no figur
    corecore