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Abstract

Since the beginning of revenue management, simulation has been used to estimate the expected revenue resulting
from an availability policy. It has also been used to verify the quality of forecasts by projecting them onto past
availability policies. Recently, it has been used in simulation-based optimization approaches to find the best policy.
Simulation thus has a central role in revenue management. We focus on the choice network revenue management
(CNRM) problem that incorporates multiple resources and customer behavior. The traditional CNRM simulation is
based on discrete customer arrivals; we propose a new approach based on fluid arrivals. Our estimator is biased, but we
observe that the bias is often insignificant in practice and appears to be asymptotically null. Our approach consistently
outperforms the traditional simulation in terms of estimation time and is thus a better choice for large instances. We
also prove that it is equivalent to an approximation for the CNRM availability policy optimization problem. This
equivalence limits the value of optimization-based simulation methods but allows us to propose heuristics to rapidly
support the optimization.

Keywords: revenue management, fluid arrivals simulation, choice behavior, availability control, optimization based
simulation

1. Introduction and literature

Revenue management (RM) aims to match offers to demand, given limited and perishable resources, in order
to maximize revenue. The resources are sold as products whose availability is controlled over the reservation pe-
riod. Choice network revenue management (CNRM) considers resources and customer behavior simultaneously. The
CNRM variant includes customer buying logic such as buy-up and buy-down and allows customers to buy-across
resources. See Talluri and van Ryzin (2004) for a complete review of RM. In this article, we focus on simulation for
CNRM.

Simulation has been widely used in CNRM. First, it can measure the quality of the availability policies returned by
optimization models. The CNRM availability policy optimization problem can be formulated as a dynamic program
(DP; Liu and van Ryzin, 2008). The goal is to manage the product availability over the reservation period in order to
generate the highest revenue. However, the DP rapidly becomes intractable, and approximations are used; they must
find a balance between simplicity and realism. Simulation can then be used to estimate the expected revenue resulting
from an availability policy. This is an indicator of the performance of the approximation model. For example, Bront
et al. (2009) benchmarks static and dynamic approximations based on the simulated expected revenue. However,
simulation often requires many evaluations, even for small instances. Meissner et al. (2013) obtain a precision of
approximately 6% of the expected revenue after 2000 evaluations for an instance with only six products. If greater
accuracy is required, the simulation will be slow or intractable.

Second, simulation is used within some CNRM approximation models. Talluri (2010), Kunnumkal and Topaloglu
(2011), and Talluri (2014) solve a randomized approximation several times, simulating the customer arrivals to tighten
their solutions. The simulation adds a stochastic component to deterministic approximations.

Third, simulation is used to forecast demand and predict behavior. It can apply forecasts to historical availability
policies to determine what products are booked. The resulting bookings are then compared to the actual bookings
made to evaluate the forecast accuracy, and the forecast can be modified by integrating the insights from the simulation.
Cleophas et al. (2009) develop a simulation framework with an artificial demand generator to compare the performance
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of forecasting methods. Fiig et al. (2014) propose a forecast accuracy measure for behavioral demand based on
historical observations. They minimize the corresponding error to optimize the forecast parameters. In practice,
simulation must be able to process large historical data sets in a reasonable time. Simulation is also used for the
creation of training data with which to test methods, as in van Ryzin and Vulcano (2015) and van Ryzin and Vulcano
(2017).

Fourth, simulation-based optimization methods have been explored for CNRM availability policy optimization
because they accurately model the problem. Bertsimas and de Boer (2005) and van Ryzin and Vulcano (2008b) de-
velop stochastic gradient descent for RM without choice behavior. Van Ryzin and Vulcano (2008a) and Chaneton
and Vulcano (2011) generalize the method to CNRM for nonparametric choice behavior. Other researchers propose
model-free methods. For example, Bijvank et al. (2011) integrate a stochastic gradient technique while Gosavi et al.
(2005) experiment with simulated annealing and simultaneous perturbation (SP) methods. Optimization-based simu-
lation approaches generally achieve only local convergence. Moreover, they require many evaluations of gradients or
finite differences. For the largest instances, current simulation models are too slow.

Fifth, simulation can be used as a what-if tool to support decisions in CNRM. We can change one or more features
(e.g., the availability policy or the resource capacity) and measure the changes in terms of revenue, bookings, load
factor, or any relevant output. RM analysts use this to select promotions or group reservation deals. The Passenger
Origin-Destination Simulator (PODS) was introduced by Boeing in the 1990s (Belobaba and Hopperstad, 1999) to
analyze customers’ RM preferences. It has since been further developed (Carrier, 2003; Weatherford, 2013; Carrier
and Weatherford, 2015) and now belongs to PODS Research LLC. Eguchi and Belobaba (2004) use PODS to highlight
the importance of group bookings for the Japanese airline market. Gorin and Belobaba (2004) use the software
to investigate the potential of RM in a low-fare airline. Darot (2001) studies RM for airline alliances with PODS,
and Frank et al. (2008) explain how to set up a stochastic simulation model for RM analyses. Frank et al. (2006)
use simulation to measure the effects of continuous capacity adjustments for different allocation times. Doreswamy
et al. (2015) use the Airline Planning and Operations Simulator (APOS) developed by Sabre to explore the impact of
different RM methods. Bijvank et al. (2011) developed a complete Java simulation library for CNRM. When used as
a what-if tool, simulation must quickly return an accurate expected revenue.

Simulation usually handles discrete customer arrivals; we refer to this as discrete arrivals simulation (DAS). The
arrival process is stochastic, and the expected revenue is estimated by a Monte-Carlo approach (Gilks et al., 1995).
In this approach, each evaluation considers a random discrete arrival sequence. We calculate the revenue by applying
the availability policy to the sequence. We then average the revenues obtained to estimate the expected revenue. This
estimator is unbiased and approaches the real expected revenue as the number of evaluations increases. The precision
relies on the confidence interval (CI), which is proportional to the ratio between the evaluation variance and the root
square of the number of evaluations. The variance depends on many complex factors and is thus difficult to calculate
a priori. Increasing the number of evaluations will improve the accuracy of the revenue estimate. However, each
evaluation must process every arrival in the DAS model, so this estimator is slow for large instances.

In this article, we introduce another way to use simulation to estimate the expected revenue in CNRM: we consider
a continuous flow of arrivals. Our approach is called fluid arrivals simulation (FAS). It has been used by Kesidis et al.
(1996) for ATM networks and by Figueiredo et al. (2006) for computer networks. To the best of our knowledge it has
not been applied to CNRM.

FAS does not use the Monte-Carlo technique because it estimates the expected revenue in a single evaluation
by neglecting the order of the arrivals. It takes about the same time as a few DAS evaluations. Consequently, FAS
outperforms DAS in terms of estimation time in all our experiments. Because the estimation is direct, FAS is also
invariant, but it is biased. This bias is difficult to determine in theory because of the mechanism of the behavior and
availability policy. In practice, it is relatively small for large instances and seems to be asymptotically null.

We prove that FAS is equivalent to the choice deterministic linear program (CDLP; Liu and van Ryzin, 2008),
which is a widely used approximation for CNRM availability policy optimization. This equivalence limits the value
of optimization-based simulation methods for FAS because it is preferable to directly solve the CDLP. We conduct
experiments that show the slow convergence of an SP method for FAS and the need for a good initial solution.
However, this equivalence allows us to develop new approaches to support the solution of the CNRM problem. They
benefit from the speed of FAS and help to reduce the solution time. The two approaches that we propose are: the
selection of a good initial CDLP solution by simulation and the estimation of the CDLP policy for a simplified
demand. Both methods are simple and greatly accelerate the CDLP in our experiments. Our estimator therefore
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potentially has a wide range of applications.
The remainder of this paper is organized as follows. In Section 2, we present the CNRM notation and discuss

discrete arrivals. We then present DAS, which is the traditional estimator of expected revenue in CNRM. Section 3
presents our FAS estimator. We describe the discrete changes that occur although the simulation is considered fluid.
We then analyze the properties of the bias. In Section 4 we examine the use of our estimator for the CNRM availability
policy problem. We start by presenting an SP algorithm for optimization-based simulation with FAS. We then prove
that FAS is equivalent to CDLP, and finally we suggest some ways to support optimization with our estimator. Our
computational experiments are reported in Section 5, and Section 6 provides concluding remarks.

2. Simulation for the CNRM

In this section, we start by giving the principal CNRM definitions. We then describe the process by which indi-
vidual customers arrive during the reservation period and eventually buy a product. We finish by presenting the DAS
estimator, which is the traditional simulation for CNRM.

2.1. Definitions
CNRM is based on resources i ∈ I, each with a capacity ci. There are m = |I| resources. These resources are

incorporated into products j ∈ J that are sold at a fare r j. There are n = |J| products. We denote by I j the set of
resources consumed by each product j. We denote by S ⊆ J a set of products, and we call it an offer. These products
are sold during the reservation period, from time t = 0 to time t = T . The resources perish at the end of the reservation
period (t = T ).

The goal is to control the availability of the products over the reservation period in order to maximize the revenue
generated by the sales. Let x ≤ c be the vector of remaining capacities and J(x) ⊆ J the set of products with
nondepleted resources. We must find the availability policy formed by offers O(t, x) ⊆ J for all t ≤ T and x ≤ c
that maximizes the revenue. The set of products available at any time and for any remaining capacity is S (t, x) =

O(t, x) ∩ J(x).
A segment l ∈ L groups customers with the same choice behavior who are interested in the same products Cl ⊆ J.

This behavior is reflected by the probability Pl( j|S ) of buying product j if offer S is proposed. The customers of a
segment arrive during the reservation period according to a Poisson process with arrival rate λl (a constant). We define
λ(S ) = {λ j(S )} j∈J to be the product arrival rate vector if offer S is proposed, where λ j(S ) =

∑
l∈L
λlPl( j|S ) for each

component.
We use the running instance (RI) of Figure 1 to explain the following concepts and models. The reservation period

A B C1 2

R
es

ou
rc

es i ci

1 1
2 1 Pr

od
uc

ts j r j I j

1 100 {1}
2 300 {2} Se

gm
en

ts l λl Pl( j|S )

1 2 Buy only 1
2 3 Buy only 2

Availability policy: O(t, x) =

{
{1, 2} if t ≤ 0.3
{2} otherwise

Figure 1: Running instance.

is T = 1, and the availability policy offers the first product for 0.3 periods and the second throughout the reservation
period.

2.2. Arrivals process
The customers arrive over the reservation period according to a random Poisson process by segment. The segment

arrival sequence is therefore a random process; we denote by Ω its set of realizations. Let ω ∈ Ω be a random segment
arrival sequence with ω distinct arrivals. It is indexed by k ∈ [1, ω] to identify each arrival chronologically. The kth
arrival occurs at tk

ω ∈ [0,T ] for remaining capacities xk
ω ≤ c and corresponds to a customer of segment lkω ∈ L. We

have tk
ω ≤ th

ω and xk
ω ≥ xh

ω for all h ∈ [k, ω].
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Let ψ(l, S ) be the random purchase function, returning a purchase vector
{
ψ j(l, S )

}
j∈J

. The sole component equal
to one corresponds to the product bought. The set of realizations is Ψ, and the purchase function satisfies

EΨ

[
ψ(l, S )

]
= {Pl( j|S )} j∈J . (1)

We can calculate the random revenue Rk
ω generated by the kth arrival of any arrival sequence ω as follows:

Rk
ω = Rk−1

ω + r>ψ
(
lkω, S (tk

ω, x
k
ω)

)
, ∀k ∈ [1, ω], ω ∈ Ω

where R0
ω = 0. The random revenue Rω of the entire arrival sequence ω is then:

Rω =

w∑
k=1

r>ψ
(
lkω, S (tk

ω, x
k
ω)

)
, ∀ω ∈ Ω. (2)

We determine the CNRM expected revenue as follows:

E[R] = EΩ×Ψ[Rω]. (E[R])

As mentioned in Section 1, this expected revenue is fundamental for CNRM because it reflects the revenue received
in practice. However, the combination of two realization sets, the availability policy, and the overlapping segments
makes it almost impossible to calculate the expected revenue.

The calculation is possible for our small RI. Segment 1 arrives at least once between 0 and 0.3 with probability
1 − e−2×0.3, and segment 2 arrives at least once over the reservation period with probability 1 − e−3. The expected
revenue is therefore (1 − e−2×0.3) × 100 + (1 − e−3) × 300 = 330.18.

2.3. Discrete arrivals simulation (DAS)
The expected revenue is usually estimated, and the traditional RM approach is based on the Monte-Carlo method.

Instead of a complete enumeration, this method draws N segment arrival sequences ωk with k ∈ [1,N]. A revenue R̃ωk

for each sequence is obtained from Eq. (2) by choosing a random purchase. The expected revenue is then obtained by
averaging these revenues:

µD =
1
N

N∑
k=1

R̃ωk −−−−→
N→∞

E[R]. (DAS)

This DAS estimator computes each discrete customer arrival. According to the strong law of large numbers, µD

converges almost surely to E[R] as the number of arrival sequence increases. This estimator is therefore unbiased.
The central limit theorem gives an α CI CID

α for this estimator:

CID
α =

δα
√

Var[R]
√

N
, ∀α ∈ [0, 1] (CI)

where γα is the 1−α
2 percentile of the normal distribution and Var[R] is the variance, which measures the volatility of

the revenue. The CI establishes that α% of the values are in
[
µD −

CID
α

2 , µD +
CID

α

2

]
. The precision of the DAS is thus

inversely proportional to the square of the number of evaluations.
The variance is almost impossible to calculate and is thus estimated by the sample variance:

σD =
1
N

N∑
k=1

(
R̃ωk − µD

)2
−−−−→
N→∞

Var[R].

The speed of the DAS convergence depends on this variance. If the variance is high, many evaluations are necessary
to increase the precision, as we can see in Eq. (CI).

Each arrival requires the central reservation system (CRS) to process the available products. The complexity of
each evaluation is therefore proportional to the average number of CRS calls per evaluation, denoted CRSD. Each
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101 102 103

300

400

N

E[R] µD CID95%

Figure 2: DAS convergence for the RI.

evaluation covers a sequence of ω arrivals, so CRSD ≈ EΩ[ω]. The overall DAS complexity therefore depends on
the revenue variance and the number of CRS calls per evaluation. Unfortunately, the arrival stochasticity and the
availability policy logic often lead to a high variance. Moreover, for large instances the number of arrivals, and thus of
CRS calls, can be considerable. DAS may be unable to estimate the expected revenue accurately in the time allowed.

We plot in Figure 2 the DAS estimation convergence of the RI expected revenue with a 95% CI. We observe that
DAS is unbiased, as expected.

3. Fluid arrivals simulation (FAS)

In this section, we present our new approach to estimate the expected revenue. It is inspired by work on fluid
simulation for queues and computer networks. We also detail here its mechanisms and properties.

3.1. Model formulation

For DAS, the order of the arrivals leads to stochasticity. The main idea of our approach is to consider the arrivals
of each segment as a fluid rather than individuals. For example, five customers of a segment arriving over a reservation
period of two intervals are considered as a segment arriving with a rate of 5/2. The order of the arrivals thus becomes
unimportant, and the expected revenue can be calculated as follows:

µF = EΨ

∫ T

t=0

∑
l∈L

λl r>ψ (l, S (t, x)) δt

 =

∫ T

t=0

∑
l∈L

λl r>EΨ

[
ψ (l, S (t, x))

]
δt.

In this continuous case, the expected value of ψ is simplified as in Eq. (1) and the FAS is

µF =

∫ T

t=0
r>λ(S (t, x))δt. (FAS)

The FAS estimator is therefore continuous and deterministic because it is calculated in a single evaluation (NF = 1).
It is also invariant (σF = 0).

3.2. Discrete changes

FAS is continuous but the function S (t, x) is a set of products with discrete additions and removals. We assume
that the number of changes is finite, which is the case in practice. We index by k ∈ K these changes over time where
K is the set of changes of size nK = |K| − 1. Each change occurs at time tk and for the remaining capacities xk. The
first change, k = 0, corresponds to the start of the reservation period: t0 = 0 and x0 = c. The final change, k = nK ,
corresponds to the end of the reservation period: tnK = T and xnk = 0. Between two changes, the set S (t, x) is constant
and denoted by S k = S k(tk, xk). We can now rewrite the FAS calculation as follows:

µF =

nK∑
k=0

∫ tk+1

t=tk
r>λ(S k) δt =

nK∑
k=0

r>λ(S k) dk (3)

where dk = tk+1 − tk is the time between two consecutive changes. There are three possible changes:
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• A resource depletion that changes J(x);

• A change in availability policy O(x, t);

• The end of the reservation period, S (t, x) = ∅.

When a change occurs, we can easily determine the next change by calculating the minimum time step to the next
resource depletion, the next change in the availability policy, or the end of the reservation period.

For the RI, the first change corresponds to the beginning of the reservation period. The offer is S 0 = {1, 2} and the
product arrival rate is λ0 = (2 3). We then calculate the above time steps; they are indicated by an × in Figure 3. The

•
0

t

k=0
Reservation
period start

×

0.3

Po
lic

y
ch
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ge

×

1/3

R
es

ou
rc

e
2

de
pl

et
ed

×

0.5
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1

de
pl

et
ed

×
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tio
n
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ri

od
en

d

Figure 3: Determination of second change for RI.

minimum time step is d0 = 0.3, corresponding to the policy change at t = 0.3. We have sold d0λ0 products between
these two changes, and we have t1 = 0.3, S 1 = {2} and λ1 = (0 3). We illustrate the possibilities for the third change
in Figure 4. The minimum time step corresponds to the depletion of resource 2 at t = 1/3. The final change is the end

•
0

t

k=0
Reservation
period start

•
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change
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Figure 4: Determination of third change for RI.

of the reservation period. We have sold d0λ0 + d1λ1 + d2λ2 = 0.3(3 2) + (1/3 − 0.3)(0 3) + (1 − 1/3)(0 0) = (0.6 1)
products and µF = 360.

The complexity of the FAS depends on the number of changes. At each change the CRS must compute the
minimum time step to the next change. This CRS call, denoted CRSF , may be more complex than that for DAS. It is
almost impossible to determine CRSF a priori, but in some cases we can find a bound on the number of changes. If
there is no reopening of product sales over the reservation period, the only possible changes are resource depletion,
product removal, and the end of the reservation period. Each of these changes occurs only once, so CRS F ≤ n+m+1.

3.3. Bias and properties

With the RI, the estimate µF = 360 is not equal to the theoretical expected revenue, E[R] = 330.18. This shows
that FAS is a biased estimator of the CNRM expected revenue. We denote the FAS bias by θF = E[R] − µF and
approximate it by θ̃F as follows:

θ̃F = µD − µF −−−−→
N→∞

θF . (FAS Bias)

The relative estimated bias is ∆θ̃F =
µD−µF

µD . The bias is explained by the situations where a discrete resource capacity
is sold in fractional quantities to multiple customers. In contrast, in the DAS model a resource cannot be partially
sold. For the FAS of the RI, the first resource is sold to 0.6 customers of the first segment.

The number of fractional situations depends on the instance. It is difficult to predict because it depends on the
number of resources, the policy, and the demand.

We now show that FAS can underestimate (θF ≥ 0) as well as overestimate (θF ≤ 0).
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Proposition 1. The FAS bias can be positive or negative.

Proof of Proposition 1. Consider two resources with c1 = 2 and c2 = 1, and two products with prices r1 and r2 such
that I1 = {1} and I2 = {1, 2}. Suppose there are two segments, both arriving at the rate 2 during a reservation period T
=1. We can easily show that E[R] ≈ 7

6 r1 + 5
6 r2 and µF = r1 + r2. Hence, θF = 7

6 (r1 − r2). By adjusting the values of r1
and r2, we obtain either positive or negative bias.

Proposition 2. The FAS bias can be arbitrarily large.

Proof of Proposition 2. By adjusting r1 and r2 in the proof of Proposition 1, we obtain an arbitrarily large bias.

However, in practice the size of the bias is reasonable. Moreover, the relative bias is ∆θ̃F = θF

µD = r2−r1
7r1+6r2

, which

is in the range − 1
7 ≤ ∆θ̃F ≤ 1

6 and is thus relatively insignificant. It is difficult to theoretically determine the bias
because it depends on the policy, the arrival stochasticity, and the resource capacity. Furthermore, it is mainly caused
by phenomena occurring when one or more resources have a capacity close to one.

4. FAS and CNRM optimization

In this section, we focus on how FAS can solve or support the CNRM availability policy problem. We start by
presenting an SP algorithm for FAS. We then prove the equivalence between FAS and one of the principal CNRM
approximations. We finally propose two simple methods that use FAS to support the solution of this problem.

4.1. Optimization-based simulation

One of the most widely used methods in optimization-based simulation is the SP algorithm; see Spall (1998) for
more details. For this algorithm, we use a product closing (PC) availability policy. It specifies a time 0 ≤ t j ≤ T to
close the sale of each product such that:

S PC(t, x) =
{
j | j ∈ J, t j ≥ t

}
.

SP is a gradient descent method. We denote by tk the vector of products closing at iteration k. This technique is based
on the following approximation:

∂µ(t)
∂t j
|t=tk ≈

µ(t + h) − µ(t − h)
2h j

where h = {h j} j∈J and h j = B
kβ with B a Bernoulli random variable and β ∈ [0, 1] a tuning parameter. The next PC

policy is thus obtained as follows:

tk+1
j = Π0≤t≤T

[
tk

j + αk ∂µ(t)
∂t j
|t=tk

]
, ∀ j ∈ J

where αk = α
k is the step size of the descent.

We did not study the properties of the function µ(t); see Spall (1998) or Gosavi (2015) for the convergence
properties of SP.

4.2. Equivalence to CNRM optimization

Static approximations of the CNRM availability policy optimization problem avoid the discrete customer arrival
complexity of the DP by considering a continuous and deterministic flow of customers. They all have the same
structure:

R = max
q

r>q (STATIC)

s.t. Aq ≤ c,

q ≥ 0.
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The CDLP is a static approximation based on an availability policy that controls the time dS ≥ 0 for which each offer
must be proposed:

q =
∑
S⊆J

λ(S )dS (CDLP)

s.t.
∑
S⊆J

dS ≤ T,

dS ≥ 0, ∀S ⊆ J.

The relationship between the CDLP and the DP is quite similar to the relationship between FAS and the exact
E[R]. In both cases, the individual arrivals are replaced by their expected arrival rate. We can prove that the CDLP
revenue is equivalent to the FAS estimation for any offer duration.

Proposition 3. µD = RCDLP.

Proof. The CDLP set of products with non-null duration S̃ u is arbitrarily ordered over u ∈ [0,m − 1] because the
CDLP has at most m sets with non-null durations. Each set has a duration d̃u, giving t̃u+1 = t̃u + d̃u with t̃m+1 = T and
S̃ m+1 = ∅. We apply Eq. (3) to this policy. The first change occurs at t̃0 = 0 and corresponds to the initial CDLP set S̃ 0.
The next change does not occur until t̃1 because the STATIC capacity constraint ensures that no resources are depleted
during this period, and the end of the reservation period is not reached because of the second CDLP constraint. We
therefore prove by recurrence that we have k = u until k = m and hence

µF =

nK∑
k=0

r>λ(S k) dk = r>
 m∑

k=0

λ(S̃ k) d̃k +

nK∑
k=m+1

λ(S̃ k) d̃k

 = rT
m∑

k=0

λ(S̃ k) d̃k = RCDLP.

For k > m, we necessarily have S̃ k = ∅ to ensure the STATIC capacity constraint, so λ(S̃ k) = 0.

This proof was developed for the CDLP, but it is similar for many static approximations, so the equivalence is
easily extended. The equivalence and the fact that the simulator is based on fluid arrivals show that FAS cannot
improve the robustness of the static approximation solution by taking into account the arrival order stochasticity; this
is in contrast to DAS.

4.3. Optimization support
Our approach can support the optimization although it does not improve the solution quality because of the arrival

order stochasticity. Its rapidity and the equivalence result allow several applications. We propose two simple ideas:

• We can solve the CDLP for only the most significant part of the demand to reduce the solution time and then
simulate the corresponding optimal policy by FAS to evaluate it for the full demand.

• We can use FAS with a metaheuristic to provide a good initial solution for the CDLP.

Both approaches are tested in the experiments.

5. Computational results

In this section, we perform numerical experiments on the following two estimators:

DAS is the traditional estimator described in Section 2.3. Recall that µD is the estimate of the expected value E[R],
and σD is the estimate of the variance VAR[R]. CPUD is the running time, and the number of evaluations is
ND. CRSD is the number of CRS calls, which for this estimator is equal to the number of arrivals. To stop the
convergence, we use a 95% relative CI width ∆[ICD

95%] =
[ICD

95%]
µD or a maximum number of evaluations.

FAS is our new estimator introduced in Section 3. Recall that µF is the estimate of the expected value E[R]. There is
only one evaluation and thus no variance (NF = 1, σF = 0). The running time is denoted CPUF . CRS F is the
number of CRS calls, corresponding for this estimator to the number of changes.
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A B C D E F

Figure 5: Markets for bus-line instance.

Bus-line is an instance of eight buses leaving every two hours from 07:00 to 21:00 from city A to cities B, C, D, E,
and F. A total of 15 markets are served, as illustrated in Figure 5. Each bus has a capacity of 30 and there are
5× 8 = 40 resources. Two fares (low, high) are offered for each trip, giving a total of 15× 8× 2 = 240 products.
In the bus industry, tickets are usually available at least two months in advance, so we set T = 60 days. In total
there are 15 × 8 = 120 segments with nonparametric choice behavior and on average 5.3 products.

Airline is an instance based on the Delta Air Lines network limited to the five major US airports. The network has 20
markets, as illustrated in Figure 6. It has 115 resources that correspond to the flights. There are 1591 products,
and the reservation period is T = 360 days. There are 438 segments with nonparametric choice behavior and
on average 7.9 products.

ATLLAX

ORD

DFW

JFK

Figure 6: Markets for airline instance.

The load factor (LF) is defined as LF =
∑

l∈L λl/
∑

i∈I ci. We use PC times for the availability policy; these set the
times when the sales of each product are closed.

5.1. Convergence and bias

In this section, we compare the convergence of the two estimators and analyze the bias of FAS. The term con-
vergence is imprecise for FAS since it calculates the expected revenue in a single evaluation. However, this is a way
to illustrate the differences between these two estimators. Figure 7 illustrates the convergence of the two estimators
for the optimal availability policy returned by the CDLP. This approximation is explained in Section 4.2. We stop the
DAS simulation after 1000 evaluations.

The most relevant observation is that FAS always overestimates the real expected revenue, by 6.9% on average
for the bus-line and 2.8% for the airline. This overestimation arises because the availability policy is optimal. At
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Figure 7: Expected revenue estimates µF and µD with respect to the number of evaluations N for the optimal CDLP availability policy. The FAS
relative bias ∆θ̃F and the DAS 95% confidence interval ICD

95% are also reported.

optimality, the fluid aspect is emphasized because the optimizer takes it into account to maximize the revenue. The
difference with DAS is thus at its peak because FAS returns exactly the optimizer revenue, as proved in Section 4.2.

We observe that the bias increases as the LF increases from 0.8 to 1.0 and is then approximately constant. This
is verified by further experiments for the bus-line. With the notation (LF, ∆θ̃F), we report (0.2, 3.63%), (0.4, 4.24%),
(0.6, 4.55%), (1.4, 7.39%), (1.6, 7.63%), and (1.8, 7.41%). Therefore, the bias becomes constant once a certain LF is
reached. This could be because the optimizer does not improve the revenue with an additional fluid aspect. Another
explanation is that the fluid aspect situations seen in Section 3.3 are all captured from a certain LF.

We also note that there is a difference of magnitude in the bias for the two instances. The bus-line bias is around
2.5 times higher than that for the airline. This suggests the asymptotic nullity of the bias: the average capacity per
resource is 30 for the bus-line and 180 for the airline. The fluid aspect situations are more absorbed in the airline,
clearly because of the higher capacity. This also highlights the difficult of predicting the bias.

To further investigate these poor results of FAS, we generate random availability policies for different scenarios.
These scenarios vary the percentage γclose of PC times fixed to zero; the other PC times are randomly chosen according
to a uniform law. When γclose = 0, every product is offered, and when γclose = 1 no product is offered. We report
in Figure 8 the relative FAS bias for different relative widths of the DAS CI and with respect to the scenarios for the
PC times and the LF. We selected 100 and 25 availability policies per scenario respectively for the bus-line and the
airline. The full results are reported in the Appendix: see Table A.2 for the bus-line and Table A.3 for the airline.

We first observe that the relative difference in the bias is not as high as before. It is 7.7 times lower (6.9% to 0.9%)
and 14 times lower (2.8% to 0.2%) respectively for the bus-line and airline instances. This confirms that the optimal
policy emphasizes the fluid aspect to maximize the revenue. Therefore, the optimal availability policy is certainly the
one with the highest bias.

We observe that the bias evolution does not seem to follow any specific trend and might be unrelated to γclose. This
confirms that the fluid aspect does not depend on any one factor but is a consequence of a more complex interaction
between the demand, the policy, and the structure of the instance.

We note that the bias for the 5% relative CI has considerable variability, whereas the 1% and 0.5% biases are
smoother and similar. This shows that the DAS convergence is not rapid. For precise estimation, a 1% relative CI
seems appropriate.

We now investigate the relationship between the FAS bias and the instance structure. We vary the capacity of both
instances by a factor γcapacity, i.e., c→ c × γcapacity. For each capacity scenario, we maintain the LF by scaling up the
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segment arrival ratio. In Figure 9, we report the evolution of the FAS bias for averaged random availability policies
and for the optimal CDLP availability policy. The LFs are 0.8, 1.0, and 1.2. The capacity factor varies from 0.1 to
100. We first observe the same features as in the previous experiments. The optimal policy is always the one with the
highest bias. It is on average between 3 and 30 times higher than the random policy bias. This figure also shows that
the fluid aspect is more prominent in the bus-line instance (0 to 20%) than in the airline instance (0 to 8%). The main
observation is that the bias decreases as the capacity and demand are scaled up. We have not proved that the bias is
asymptotically null, but the results suggest this. However, an asymptotic result does not in practice determine the bias
of an instance.

In conclusion, these experiments show that the bias is caused by a fluid aspect that is difficult to predict. It depends
on a combination of mechanisms between the instance structure, the demand, and the policy. It is stronger when the
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availability policy is optimized. However, the bias is low for random policies, is reduced for instances with a higher
capacity, and appears to be asymptotically null.

5.2. Estimation time

We now compare the estimators in terms of estimation time. Estimations must be returned quickly to allow users
to rapidly test several options before making a decision. Also, these estimators are often used in optimization-based
simulation methods that require many estimations.

In Figure 10, we report the estimation times with respect to γclose for the experiments of Section 5.1. The estimators
compared are FAS and DAS for three relative CI widths: 5%, 1%, and 0.5%.
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Figure 10: Estimation time for FAS and DAS ([ICD
95%] is 5%, 1%, and 0.5%) with respect to γclose.

The most important observation is that FAS is always faster, whatever the value of γclose and the relative CI width.
As expected, the difference increases with the relative CI width because DAS needs more evaluations to reach the
necessary precision, as explained by Eq. (CI). Overall, FAS is faster than the 5%, 1%, and 0.5% DAS: respectively
2.7, 67.9, and 275.6 times faster for the bus-line and 2.4, 6.5, and 27.5 for the airline.

We note that the superiority of FAS is even more pronounced as γclose increases. It is respectively 33.7, 87.8, and
1673.1 times faster for the bus-line and 3.4, 8.6, and 101.7 times faster for the airline when γclose is 20%, 60%, or
90% in comparison with the 1% DAS. As γclose increases, the number of changes decreases because more products
are closed, and the relative DAS variance increases because the revenue depends on what products were closed. This
is shown by the measures of variance and the CRS calls reported in Tables A.2 and A.3.

We observe that the estimation times are slightly lower for both estimators as the LF increases. For FAS and the
LFs 0.8, 1.0, and 1.2, the average estimation times are respectively 0.05, 0.045, and 0.043 for the bus-line and 3.3,
2.9, and 2.6 for the airline. This is due to the higher demand that tends to consume resources faster and thus decreases
the number of changes, as shown in Tables A.2 and A.3. For the 1% DAS and the LFs 0.8, 1.0, and 1.2, the average
estimation times are respectively 3.3, 3.2, and 2.9 for the bus-line and 92.6, 79.2, and 73.7 for the airline.

In Table A.1, we report the measures of the FAS and DAS estimations for the optimal availability policy. We note
that FAS is 18.5, 34.1, and 53.3 times faster for the bus-line and 5.6, 9.6, and 6.3 times faster for the airline than the
1% DAS for the 0.8, 1.0, and 1.2 LFs. This supports our observation on the relationship between the estimation time
and the LF.

As expected, the estimation of the bus-line expected revenue is 7.0 times faster than that for the airline. This is
mainly because the airline instance is larger in terms of resources, products, and segments.
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In Figure 11, we report the time to compute a CRS call for the two estimators with respect to γclose. For FAS, each
CRS call corresponds to a change, and we must compute the next change by calculating the time step. For DAS, it
corresponds to a customer arrival, and we must compute the available products. The data used is from Tables A.2 and
A.3.
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Figure 11: Evaluation time CPU/N for the two estimators, averaged over the load factors 0.8, 1.0, and 1.2.

We note that the CRS call time decreases as γclose increases for both estimators. This is because both calculations
are easier when fewer products are offered and thus for a higher γclose.

We observe that it takes longer to compute a FAS change than a DAS arrival. On average, it is 56.3 times longer
for the bus-line and 141.1 for the airline. This is because determining the next change is more complicated than simply
computing the available products. We must determine for each remaining resource the time step to depletion and for
each available product the time step to unavailability. The minimum time step corresponds to the next change. On the
other hand, computing the available products involves simply checking if a product is available for the policy and if
its resources have remaining capacity.

Note that the results for estimation times depend on how the estimators are coded. We tried to find the best
implementation of each approach to give a fair comparison.

In conclusion, the experiments show that FAS outperforms DAS in terms of estimation time. As expected, the
time to calculate each change (CRS F) is greater than the time to compute each arrival (CRS D). However, the number
of arrivals may be large, depending on the desired precision and the number of arrivals per evaluation.

5.3. Optimization

We now compare the two estimators in terms of solving the CNRM problem. The goal is to use simulation to
converge to the availability policy returning the best expected revenue.

We start by implementing the SP algorithm (Section 4.1) for the FAS estimator. We use the parameters α = 0.01
and α = 0.001 respectively for the random and the optimal starting point. We also set β = 0.5. In Figure 12, we report
the convergence of this method (µF) for a random and an optimal starting point. The availability policies found during
the convergence are simulated by the DAS estimator (µD).

The main message from Figure 12 is that the SP needs a good starting point to find a near-optimal solution. We
stop the process after 1000 iterations, but the additional improvement is insignificant because of the step size h j as
explained in Section 4.1. We adjusted the parameters α and β, but the convergence was worse.

For the optimal starting point, the SP starts by worsening the solution and then converges to near-optimality. This
is because the SP leaves the optimal area corresponding to a specific local maximum.
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Figure 12: SP technique applied to the FAS estimator (µF ). The solutions returned by FAS are simulated by DAS (µD).

The method performs 1000 iterations in approximately 12 min for the bus-line and between 50 and 120 min for
the airline. It is much slower than solving the CDLP, and the solution is at best equivalent.

Note that both estimators have approximately the same shape over the SP convergence. The estimated DAS
revenue is lower than that for FAS because of the bias explained in Section 3.3 and demonstrated in Section 5.1. We
note that the bias is approximately constant, and that the optimization on FAS is similarly reflected on DAS.

We conclude that the equivalence with the CDLP makes it difficult for an optimization-based FAS simulation
technique to be as efficient as the solution of this mathematical program. Moreover, FAS does not take into account
the arrival order stochasticity to improve the robustness of the solutions.

However, the equivalence also allows us to develop methods to support the CNRM optimization. Without going
into details, we present two simple examples. The results are reported in Figure 13, and the method is explained
below.
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Figure 13: Two examples of FAS optimization support in the solution of the CDLP for the airline instance (LF=1).

First, we use FAS to generate a good initial solution for the CDLP. FAS is fast, and we randomly generate as
many availability policies as possible in 15 s. The best one is used as the CDLP initial solution. The results are
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reported on the left of Figure 13 for the airline instance with LF = 1. The best availability policy had a revenue of
1154306.21 (indicated by a circle in the graph), which is 34% lower than the optimal solution. With our approach,
we save approximately 700 s, which is worthwhile given the total solution time is 2000 s. However, a tabu search or a
genetic algorithm might provide a better initial solution.

Second, we use FAS to determine the CDLP revenue given the full demand for availability policies found by a
CDLP solved for a partial demand. We remove the product with the lowest probability from each segment consider-
ation set. We wish to focus on the most important component of the demand. The results are reported on the right of
Figure 13 for the airline instance with LF = 1. We observe that the final revenue is approximately 7% lower than that
for the CDLP with full demand, but we also save approximately 700 s. We could also use the convergence over partial
demand to supply a good initial solution for the CDLP with full demand.

In conclusion, the experiments of this section show that FAS is not necessarily a good estimator for an optimization-
based simulation because of its equivalence to the CDLP. However, it is fast, and the equivalence allows it to efficiently
support the CNRM optimization. The two approaches tested here could potentially be used in other applications.

6. Conclusion

We have proposed a new simulation estimator for CNRM. It estimates the expected revenue of an availability
policy by considering fluid arrivals. Requiring only one evaluation, our approach is much faster than the traditional
Monte-Carlo simulation based on discrete arrivals. Our estimator is therefore invariant but biased and can underesti-
mate as well as overestimate. The associated bias is almost impossible to measure a priori and can in theory be arbi-
trarily large. Experiments show that the bias is minimal in practice for a large instance and seems to be asymptotically
null. However, it is higher for the optimal availability policy for which the fluid aspect is emphasized. We investigated
whether our estimator can solve or support the optimization of the availability policy. Tests on optimization-based
simulation methods showed that a good starting point is crucial. We proved that our estimator is equivalent to a widely
used approximation for this problem. It is thus preferable to solve the latter rather than use our simulation to converge
locally. In particular, our estimator cannot take into account the arrival stochasticity to improve the solution robust-
ness. The equivalence allows us to develop new methods to support the optimization, and we proposed two simple
approaches that significantly accelerate the solution of the tested instance. Our estimator is promising because it is
fast even for large instances and returns acceptable estimations.
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.5
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.6
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45
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0
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1
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7
9
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0
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.6
0
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3
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1
8
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6
6
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4
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.6
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2
2
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2
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4
7
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9
5
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Table A.1: Optimal policies for both instances.
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Random policies for bus-line
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Table A.2: Bus-line with 150 random policies per PC scenario.
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Random policies for airline
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Table A.3: Airline with 50 random policies per PC scenario.
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