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Abstract

Most recent research in network revenue management incorporates choice be-
havior that models the customers’ buying logic. These models are consequently
more complex to solve, but they return a more robust policy that usually gen-
erates better expected revenue than an independent-demand model. Choice
network revenue management has an exact dynamic programming formulation
that rapidly becomes intractable. Approximations have been developed, and
many of them are based on the multinomial logit demand model. However,
this parametric model has the property known as the independence of irrele-
vant alternatives and is often replaced in practice by a nonparametric model.
We propose a new approximation called the product closing program that is
specifically designed for a ranking-based choice model representing a nonpara-
metric demand. Numerical experiments show that our approach quickly returns
expected revenues that are slightly better than those of other approximations,
especially for large instances. Our approximation can also supply a good initial
solution for other approaches.

Keywords: revenue management, offer policy, ranking-based choice behavior

1. Introduction

In 1978, when the US airline market was deregulated, airlines lost their
quasi-monopolistic status, moving to a competitive market. They were forced
to improve efficiency, in terms of both operation productivity and sales prof-
itability. Operation productivity optimization aims to improve the scheduling,
maintenance, and assignment of limited resources. Sales profitability optimiza-
tion is a type of revenue management: it aims to maximize the revenue obtained
from perishable resources. These issues are considered separately because the
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subproblems are tractable whereas the overall problem is too complex. Today,
scheduling and revenue management have many applications: airlines, rental
car companies, and hotels.

We focus on the revenue management problem for which perishable resources
are sold through different products to customers during a reservation period.
Selling a low price product early consumes a resource that could perhaps have
been sold later at a better price. However, holding on to resources for future
sales fails to satisfy the current demand.

The challenge is thus to control the availability of products over the horizon
period to maximize revenue. A policy designates all the logics to control the
availability of products throughout the entire reservation period. The resources
and products are parameters fixed by the user. The forecast of the demand is
not the subject of this article and is considered given. The revenue management
in this article refers to the problem of availability policy.

Research has shown that it is better to optimize the network formed by
the resources rather than each resource individually, but this leads to larger
problems. The latest trend in revenue management is the implementation of
choice behavior instead of an assumption of independent demand. The problem
is more complex, but the solutions are more accurate and robust. This version of
revenue management is referred to as the choice network revenue management
problem (CNRM). It was first introduced by Gallego et al. (2004), and an exact
dynamic programming (DP) formulation was given by Talluri and van Ryzin
(2004a).

However, the DP rapidly becomes intractable because of the number of
states. Researchers have therefore proposed various approximations, returning
solutions that are either dynamic or static. The quality of the approximation
can be measured by the expected revenue and the solution time. The most
popular approximations are the choice deterministic linear program (CDLP)
proposed by Liu and van Ryzin (2008), which is static, and DP decomposition
by resources, which is dynamic. For large instances and especially because of
the choice behavior, these approximations are large and difficult to solve. The
multinomial logit (MNL) model as explained in Ben-Akiva and Lerman (1985)
and Hanson and Martin (1996), which is widely used in the marketing and eco-
nomics literature, is often used for the choice behavior. Many methods such as
column generation and heuristics have been developed for this model because
its structure is well-accommodated for estimation and CNRM approximations.s

However, the MNL model has an important drawback known as the inde-
pendence of irrelevant alternatives (IIA) as detailed in Ratliff et al. (2008).
IIA causes improbable substitutions when products share similar characteris-
tics. Unfortunately perfect substitutes, such as the red/blue bus example of
Ben-Akiva and Lerman (1985), often occur in revenue management. Moreover,
the data available for forecasting may better fit another demand model. We
focus on the preference list (PL) model which is one nonparametric alternative
to the multinomial logit. It is also referred as the ranking-based model. In the
former, customers choose from an ordered list of ranked products. A probability
of transition is specified between each pair of products. Our work is motivated
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by the fact that most recent researches on choice behavior models have focused
on PL estimation as in Farias et al. (2013), van Ryzin and Vulcano (2015) and
more recently van Ryzin and Vulcano (2017). On the other hand, there has
been limited research into ranking-based CNRM approximations, and most of
the studies are adaptations of existing MNL approaches.

Our approximation exploits the structure of the PL model and is not based
on an existing approximation. By taking advantage of the logical transitions
between products rather than working with sets of products as in MNL ap-
proximations, we avoid the extremely high number of product combinations.
This results in a nonlinear model that can easily be linearized, and the binary
variables have a practical significance that can be exploited to provide good
initial solutions. The complexity of our model depends linearly on the number
of products considered for each segment. Unlike many other approximations,
our formulation benefits from overlapping by reusing variables when different
segments share products; this reduces the complexity. We assume no-reopening:
products are sold until a specified time and then never sold again. Some com-
panies have such a strategy, and most approximations model it via additional
constraints that slow the solution process. When reopening is allowed, our ap-
proximation can return a set of product durations that can serve as a good
initial solution for an approximation that allows reopening.

Our experiments show promising results in comparison with other approxi-
mations. Our approximation returns an equivalent or better expected revenue
in a shorter solution time for all the instances, although there is no-reopening.
The results also demonstrate the time saved by using our solution as an initial
solution for an approximation with reopening. We also show the limitations of
some current approximations for the largest instances, to highlight the practical
feasibility of our approach.

The remainder of this paper is organized as follows. In Section 2, we re-
view the CNRM literature, especially with ranking-based choice behavior. In
Section 3, we introduce the notation and give the exact formulation of CNRM.
In Section 4, we present our approximation with preference-list choice behavior
and its theoretical properties. In Section 5, we present practical methods for the
efficient solution of our approximation. Numerical experiments and approxima-
tion benchmarks are reported in Section 6, and Section 7 provides concluding
remarks.

2. Related literature

We refer to Talluri and van Ryzin (2004b) for reviews of the historical rev-
enue management problem with or without the network and choice aspects.
Strauss et al. (2018) presents the most recent researchs on the general revenue
management with choice behavior. We focus on the CNRM problem and discuss
only the relevant literature.

As mentioned in the Introduction, this problem has an exact DP formula-
tion Talluri and van Ryzin (2004a). Because it rapidly becomes intractable,
approximations have been proposed in two categories: static and dynamic.
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The static approximations are based on the expected demand. They there-
fore reduce the complexity and can tackle larger instances but ignore the demand
uncertainty. The solution obtained is not updated in response to new arrivals
and is hence called static. In this category, CDLP Liu and van Ryzin (2008)
is the most widely used. It indicates for how long each set of products, also
called an offer, must be sold over the reservation period. By empirically or-
dering the offers and their durations over the reservation period, we obtain a
static policy by offer period. The CDLP is an upper bound on the DP solution
and is asymptotically equivalent as resources and demand increase. However,
it has an exponential number of columns and must be solved by column gener-
ation, which has an NP-hard subproblem, as explained by Bront et al. (2009)
and Rusmevichientong et al. (2014). Liu and van Ryzin (2008) and Bront et al.
(2009) propose exact and heuristic subproblem formulations for the MNL choice
behavior.

The CDLP primal solution has to be ordered and gives a static policy. Liu
and van Ryzin (2008) and Bront et al. (2009) use the optimal dual values to cal-
culate the capacity marginal values in a DP decomposition by resource. Zhang
and Weatherford (2017) and Erdelyi and Topaloglu (2010) are other approx-
imations for the calculus of the network marginal values. In the same vein
Kunnumkal and Topaloglu (2010) uses the revenue attributed to each resource
rather than dual values. The dynamic policy obtained indicates what offer to
propose as a function of the remaining time and capacities. However, this ap-
proach needs to solve an NP-hard problem for each resource, each time, and each
remaining capacity and can therefore be intractable even if computed offline.
Moreover, an NP-hard problem must be solved for each arrival to determine
what offer to propose. This may be incompatible with current reservation sys-
tems.

Talluri (2010) proposed the segment-based deterministic concave program
(SDCP), considered as a CDLP decomposition by segment. It is more tractable
if the consideration sets are not too large, but it also provides a weaker upper
bound than CDLP unless the segments do not overlap, which is rare in practice.
To tighten the SDCP formulation with choice behavior, Meissner et al. (2013)
add valid constraints referred to as product cuts, Talluri (2014) uses a random
customer-arrival stream and Strauss and Talluri (2017) proves an equivalence
with CDLP when the intersection of segment consideration forms a tree or con-
sideration sets are nested. However, even with the extra constraints, no primal
policy is returned and the dynamic decomposition is the principal solution. The
sales-based linear program (SBLP) introduced by Gallego et al. (2014) and de-
veloped further by Talluri (2014) is a compact formulation of the SDCP under
the MNL choice behavior.

Previous researches focus on parametric choice model. Chaneton and Vul-
cano (2011) was one of the first article on the CNRM policy problem with
a ranking-based choice behavior. They formulated a continuous demand and
capacity model solved with a stochastic gradient descent. Stochastic gradient
descent performance largely depends on the initial solution and the stop crite-
rion. Therefore, this approach does not ensure a good solution for any instance.
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Later, Hosseinalifam et al. (2016) developed a subproblem for the CDLP col-
umn generation problem that tackle a ranking-based choice model. However
this subproblem is an integer program difficult to solve for larger instances.
More recently, Paul et al. (2018) solve a tree choice model for the assortment
problem. They propose a polynomial time algorithm to solve a dynamic pro-
gram under some assumptions. The recent advances on ranking-based choice
behavior forecast, such as Farias et al. (2013), van Ryzin and Vulcano (2015),
Jagabathula and Rusmevichientong (2017) and van Ryzin and Vulcano (2017),
open the way to new researches and approaches for the CNRM policy problem
under this choice behavior.

3. Notations and previous approaches

3.1. Notations

We start by introducing the notation for the CNRM problem. A resource
i ∈ I has a capacity ci. There is m = |I| resources. A product j ∈ J is
defined by a fare rj and consumed one or more resources. There is n = |J |
products. An offer S ⊆ J denotes a set of distinct products. The incidence
matrix A = [aij ]i∈I,j∈J has aij equal to 1 if resource i is used by product j
and 0 otherwise. Aj refers to the column of product j in the incidence matrix.
Customers arrive during a reservation period, indexed by t, starting at t = 0
and finishing at t = τ when the resources perish. A segment l ∈ L groups the
customers with identical choice behavior aiming to buy products Cl ⊆ J , also
called the consideration set and containing nl products. These customers arrive
over the reservation period according to a Poisson process with a uniform ratio
λl. The choice behavior is defined by the probability Pl(j|S) that segment l
buys product j among the offer S ⊆ J . We focus on preference-list also called
ranking-based choice behavior, which is nonparametric. It is characterized by
distinct ordered products indexed by lj ∈ [1, nl] or lj = 0 if j 6∈ Cl. The product
lk ∈ Cl is the kth product of the preference list of segment l ∈ L. The subset

C
[k]
l ⊆ Cl with k ∈ [1, nl] corresponds to the preference list limited to the first

k products. A transition θk-1,kl with k ∈ [1, nl] reflects the ratio of customers
passing from one product to the next in the preference list. By convention, we
fix θ0,1l = 1. Customers always choose a product according to the order defined
by the preference list. We therefore have:

Pl(j|S) =


lj∏
k=1

θk-1,kl if S ∩ C [lj ]
l = {j}

0 otherwise.

, ∀l ∈ L, j ∈ J, S ⊆ J.

We often shorten the preference-list notation to l1
θ1,2l−−→ l2

θ2,3l−−→ . . .
θ
nl-1,nl
l−−−−−→

lnl .
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To be noted that the transitions allow us to merge preference lists without
transitions. For example 2 : u → v and 3 : u → v → z can be merged as

5 : u
1−→ v

3/5−−→ z.
Running example: Let consider three products u, v, w of respective price 15,

25 and 40. u and v consume the same leg of capacity c1 = 1 and w another leg
of capacity c2 = 1. The reservation period horizon is τ = 1. Only one segment

l arrives at a ratio λl = 3 and has preference list u
0.9−−→ v

0.8−−→ w.
To illustrate the preference-list choice behavior, imagine we offer S = {v, w}

to the running example segment. Then the arrival ratio Pl(u|S) = 0 because
u is not offered (u 6∈ S). For the second choice, Pl(v|S) = 0.9 because v is the

first offered choice (S ∩ C [2]
l = {v}). Finally Pl(w|S) = 0 because a preferred

choice is offered (S ∩ C [3]
l = {v, w} 6= {w}).

3.2. Dynamic programming formulation

The CNRM problem can be formulated exactly as a DP. We choose a step
size δt sufficiently small that there is at most one arrival between t and t+ δt.
We also introduce x, the vector of remaining capacities (x = c when t = 0).
The Bellman equations can then be written as follows:

V(t+δt, x) = V(t, x) (DP)

+ max
S⊆J(x)

∑
l∈L

λl
∑
j∈Cl

Pl (j|S) (rj −∆Vj(t+δt, x)) δt

where ∆Vj(t, x) = V(t, x) − V(t, x-Aj) is the opportunity cost of selling
product j at time t. J(x) is the set of products with remaining resource capacity.
The boundary conditions are:

V(t, 0) = 0, ∀t ∈ [0, τ ],

V(τ + δt, x) = 0, 0 ≤ x ≤ c.

The optimal policy, denoted by S?(t, x), for deciding the availability of each
product over the reservation period is formed by the maximization problems
solution of S at each time and for each remaining capacity in the previous
Equation DP. We obtain it by comparing each product price to the opportunity
cost of reducing resource required for selling the product:

S?(t, x) = {j ∈ J | rj ≥ V(t+ δt, x)− V(t+ δt, x−Aj)}

This policy revenue is the optimal revenue and is denoted by V?. Unfortunately,
this DP rapidly becomes intractable as the size of the network increases. Even
an instance with only ten resources of capacity 100 has 10010 states. The CNRM
problem must therefore be solved approximately.
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3.3. Static approximations

We first consider static approximations. They avoid the discrete customer-
arrival complexity of the DP by considering a continuous and deterministic flow
of customers. The most popular static approximation is the CDLP (Gallego
et al., 2004) based on durations D = {DS}S⊆J indicating for how much time
each offer should be available. The vector of products sales is denoted Q. For
the CDLP, we have for each product:

QCDLP,j(D) =
∑
S⊆J

∑
l∈L

λlPl(j|S)DS

Such that:

R?CDLP(D?) = max
D

r>QCDLP(D) (CDLP)

s.t. AQCDLP(D) ≤ c, (π)∑
S⊆J

DS ≤ τ,

DS ≥ 0, ∀S ⊆ J.

The objective function maximizes the revenue, the first constraint ensure
that the capacities are respected and the second constraint prevents from selling
more than the reservation period.

The CDLP optimal solution for the running example is D?{v,w} = 0.370
and D?{w} = 0.463. Note that the CDLP suffers from degeneracy especially
for preference-list choice behavior. In fact, D?{v} = 0.370 and D?{w} = 0.463 is
another optimal solution.

We must now determine a policy to control the availability of products
throughout the reservation period An immediate policy for any static approx-
imation is the product booking (PB) policy that limit the sales Qj for each
product to its optimal sales Q?j :

SPB(t, x) = {j ∈ J | Qj ≤ Q?j}, ∀t ∈ [0, τ ], x ≤ c. (PB policy)

This policy is therefore static because it is fixed for the entire reservation
period.

For the running example, the optimal sales are Q?v = Q?w = 1 and Q?u = 0.
The PB policy ensures to accept at most one booking for w and v.

Practitioners derive the offer period (OP) policy by ordering the η offers
with non-null duration over the reservation period, such that:

SOP(t, x) = {j ∈ J | k ∈ [0, η], j ∈ Sk, t ∈ [tk, tk+1[} , ∀t ∈ [0, τ ], x ≤ c.
(OP policy)

Where k define how offers with non-null duration are offered and tk =
∑k
γ=0 DSγ

the time Sk starts to be offered.
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The different orders are equivalent in theory. As the PB policy, it does not
change over the reservation period and is thus static.

For the running example we can offer {w} then {v, w} or inversely. For
the first option, {v, w} will be offered from 0 to 0.463, then {w} from 0.463 ro
0.463 + 0.370 = 0.833.

To be noted that we can re-optimized any static approximation several times
over the reservation period to obtain a more “dynamic” PB or OP policy.

3.4. Dynamic approximations

The second type of approximations estimates the pseudo-revenue rj−∆Vj(t+
h, x) of each product without solving the entire DP. Most of these approaches
implement a decomposition by resource to reduce the number of states. For ex-
ample, Bront et al. (2009) approximate the network value function for resource
i as:

V(t, x) ≈ Vi(t, xi) +
∑
k 6=i

π?kxk (DCOMP)

where the dual prices π?k come from the optimal solution of a static approxima-
tion. By substituting this expression into the DP we obtain one DP per resource
for the calculation of Vi(t, x). The network opportunity cost ∆Vj(t, x) can then

be approximated by ∆Ṽj(t, x) based on the decompositions by resource, for
example (Bront et al., 2009):

∆Vj(t, x) ≈ ∆Ṽj(t, x) =
∑
i∈I
aij=1

β∆Vi(t, xi) + (1− β)π?i .

Where ∆Vi(t, x) = Vi(t, xi)− Vi(t, xi-1) and 0 ≤ β ≤ 1 is a parameter to fine-
tune. Other approximations have been proposed by Zhang and Weatherford
(2017) and Erdelyi and Topaloglu (2010). Similarly to the DP, the policy for
the products availability over the reservation period is called the offer dynamic
(OD) and is obtained as follows:

SOD(t, x) = (OD policy)

arg max
S⊆J(x)

∑
l∈L

λl
∑
j∈S

Pl (j|S)
(
rj −∆Ṽj(t+δt, x)

)
δt, ∀t ∈ [0, τ ], x ≤ c.

This approach is dynamic because it changes depending on the arrivals.

4. Closing approximation

We propose a new static approximation for the CNRM problem under non-
parametric choice behavior. Our approximation is based on a new policy, which
we call product closing (PC), that is suitable for use with a preference list. It

8



determines the time Tj ∈ [0, τ ] when each product becomes unavailable such
that the policy is:

SPC(t, x) = {j ∈ J | t ≤ Tj}, ∀t ∈ [0, τ ], x ≤ c. (PC policy)

In other words, it closes the sale of the product at this time.
The fact that products can not be sold again after being removed from sales

is called no-reopening and is defined as follows:

No-reopening⇔ ∀j ∈ S(t, x), t ∈ [0, τ ] | ∀ξ ∈ [0, t], j ∈ S(ξ, x)
(No-reopening)

A no-reopening policy is sometimes mandatory in practice. The PC policy
naturally prohibits reopening, whereas OP and OD do not if no constraints are
added. For the running example, the CDLP optimal solution reopens sales of
product v even if not offered before.

4.1. Buying logic under closing policy

To determine the product sales generated by a PC policy, we start by calcu-
lating for how long each segment buys each of its choices. We first note that the
kth choice in a preference list is bought provided the corresponding product is
available, and the products of the previous choices are not available. To explain
the buying logic driven by the PC policy, we consider the running example seg-
ment and do not consider the legs capacity issue for the moment. In Figure 1
we illustrate two cases (a) and (b) of buying logic depending on the PC times
for the segment. In case (a), the order is Tu ≤ Tv ≤ Tw, i.e., the segment buys

(a)

τ

u v w
|
0

|
Tu

|
Tv

|
Tw

(b)

τ

u w
|
0

|
Tu

|
Tv

|
Tw

Figure 1: Buying logic examples for a segment with preference list u
.9−→ v

.8−→ w.

u during Tu, then v during Tv − Tu, and finally w during Tw − Tv. In case
(b), the order is Tv ≤ Tu ≤ Tw, i.e., the segment buys u during tu and then
w during Tw − Tu because choice v is covered by choice u as a consequence of
Tv ≤ Tu.

To generalize the buying logic, we note that the kth choice of a segment is
bought if and only if its PC Tlk is greater than the PCs Tlγ of the previous
choices γ ∈ [1, k[. If this condition is satisfied, the choice is bought during the
maximum closing max

γ∈[1,k-1]
Tlγ of the previous choices and its PC Tlk . We can
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therefore determine the sales duration Dkl for each segment l and choice k as
follows:

Dkl =

(
Tlk − max

γ∈[1,k-1]
Tlγ

)+

, ∀k ∈ [1, nl], l ∈ L. (1)

If we apply this formula to the above example, we find the same durations. Let
Tkl = max

γ∈[1,k]
Tlγ = max

j∈Ckl
Tj denote the maximum closing time of the first k

products. With this notation we can reformulate (1) equivalently as:

Dkl = Tkl − Tk-1l , ∀k ∈ [1, nl], l ∈ L. (2)

We denote by DL = {Dkl }l∈L,k∈[1,nl] and TL = {Tkl }l∈L,k∈[1,nl] respectively the
segments choice durations and closing times.

4.2. Product closing program

The quantity that the segment buys is then obtained by multiplying the
duration defined in (2) by the buying probability as defined in Section 3.1, such
that:

QPCP(DL)j =
∑
l∈L

λl
∑
j∈Cl

Pl(j|{j})Dljl

We can then write the PC program (PCP) as the following static approximation:

R?PCP(T?) = max
T

r>QPCP(DL) (PCP)

s.t. AQPCP(DL) ≤ c,
Dkl = Tkl − Tk-1l , ∀k ∈ [1, nl], l ∈ L,
Tkl = max

j∈C[k]
l

Tj ∀k ∈ [1, nl], l ∈ L

Tj ∈ [0, τ ] ∀j ∈ J

The objective function maximizes the revenue, the first constraint ensure
that the capacities are respected, the second determines sales duration with
segment choice closings and the third links these latter to product closings.

For the running example, the optimal product closing policy is T?u = 0,
T?v = 0.370 and T?w = 0.832. It is thus less subject to degeneracy than CDLP
because it depends on products rather than offers.

Contrarily to the CDLP introduced in section 3.3, the PCP do not directly
returns the capacity dual variables (π) because it is a mixed integer program.
To use dynamic approximations, we approximate them by solving the PCP m
times to calculate the finite difference πi ≈ R?PCP(ci + 1)− R?PCP(ci).

Provided that the
∑
l∈L nl − 1 choice closing time variables can be found

easily, the PCP better suits ranking-choice model contrarily to the CDLP with
its 2n − 1 set duration variables.

Almost all choice models can be turned into a ranking-based choice model
by enumerating every choice path. A multinomial logit segment interested in
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S

u
v w1.0

0.83

w v1.0
0.17

0.25

v
u w1.0

0.67

w u1.0
0.33

0.38

w
v u1.0

0.71

u v1.0
0.29

0.
12

Figure 2: Choice paths of a multinomial logit segment interested in u, v and w.

products u, v and w with respective weights 2, 5 and 1 corresponds for example
to the tree of Figure 2 (weight for quitting is 0) . The PCP will not be as efficient
because the number of choice paths grows exponentially. However, iterative and
pruning techniques, that are not presented in this article, can be used to solve
this choice models more properly with the PCP.

The PCP supports heterogeneous arrival rates by splitting the reservation
period and adding constraints with integer variables. For example, we can
formulate Dl

t,k = max
(
0,min(Dk

l , et)− st
)

as the sales duration during period
t starting at st ∈ [0, τ ] and ending at et ∈ [0, τ ]. This multi-period version
is thus longer and more complex to solve as for the CDLP where the column
generation problem must be adapted to tackle periods. We prefer to use the
mono-period version with re-optimization as introduced in Section 3.3 to refine
the solution with updated homogeneous arrival rates.

We presented the PB policy in Section 3.3 with products that are partitioned
but in practice they are often nested to protect sales of higher revenue. The
PCP approach suits with the nesting concept because the respective availability
of products can easily be forced. For example the linear constraint tu ≥ tv ≥ tw
ensure the nesting u > v > w.

4.3. Reopen the policy

By ranking products by increasing closing time, we define a hierarchy H =
{Hj}j∈J such that Hu > Hv if Tu > Tv and Hu = Hv if Tu = Tv. If nT is the
number of distinct closing times then Hj ∈ [1, nT] is the rank of product j ∈ J ,
Hk ⊆ J contains all the products of rank k ∈ [1, nT] and TkH is the closing time
of rank k ∈ [1, nT] products.

Any closing times T has a unique hierarchy and thus has only one equivalent
offers duration denoted by D(T). In fact there is nT non null durations Dk =
TkH −Tk-1H with k ∈ [1, nT] and Sk =

⋃nT

γ=k H
γ . So that any PCP solution T can

be evaluated in the CDLP by using D(T).
The durations D(T) preserve the PCP no-reopening. The PCP can not use

reopening possibility and is thus a lower bound to the CDLP:

Proposition 1. R?PCP ≤ R?CDLP

11



Proof. We calculate the CDLP sales for the D(T) durations:

QCDLP(D(T)) =
∑
S⊆J

∑
l∈L

λlPl(j|S)D(T)S =
∑
l∈L

λl
∑
j∈Cl

nT∑
k=1

Pl(j|Sk)Dk

As seen in section 4.1, each segment buys a product j ∈ J between T
lj−1
l and

T
lj
l , with Pl(j|Sk) = Pl(j|{j}) otherwise Pl(j|Sk) = 0. These closing times

corresponds respectively to k = Hllj−1 and k = Hj such that:

QCDLP(D(T)) =
∑
l∈L

λl
∑
j∈Cl

Hj∑
k=H

l
lj -1

Pl(j|{j})Dk

=
∑
l∈L

λl
∑
j∈Cl

Pl(j|{j})
(
THj − THj-1 + THj-1 − · · · − TH

l
lj−1

)
=
∑
l∈L

λl
∑
j∈Cl

Pl(j|{j})(Tljl − T
lj−1
l )

=
∑
l∈L

λl
∑
j∈Cl

Pl(j|{j})Dkl = QPCP(T)

Moreover,
∑
S⊆J D(T)S ≤ TnT

H ≤ τ such that D(T) is a CDLP feasible solution
and RCDLP(D(T)) = RPCP(T).

One consequence is that we can use the PCP solution as an initial solution
for the CDLP. We call this approach the Choice Deterministic with Products
Closing initial solution (CDPC).

R?CDPC(D?) = max
D

RCDLP(D) (CDPC)

s.t. D0 = D(T?)

T? = arg maxRPCP(T)

Where D0 is the initial solution to solve the CDLP. CDPC allows to obtain a
reopening policy by using the PCP. We will also see in the numerical experiments
that PCP through the CDPC is useful to accelerate the CDLP for the largest
instances.

Another option to reopen solutions, is to use re-optimization thought the
reservation period to make the PCP reopen sales if allowed. If reopening is
prohibited, we just have to fix Tj = 0 for all the products already closed at the
time of re-optimization.

In the case of no-reopening, PCP and CDLP are equivalent:

Proposition 2. If no-reopening, R?PCP = R?CDLP

Proof. if no-reopening, each product has a unique closing time Tj . We denote
by T(D), the products closing times obtained from the no-reopening durations.

12



Similarly to the proof of proposition 1, we can show that RCDLP(D) = RPCP(T(D))
so that R?PCP ≥ R?CDLP when no reopening. With proposition 1, the result is
immediate.

5. Solving the PCP

In this section, we describe how we linearize the PCP to obtain a mixed inte-
ger linear program. We also present methods to rapidly solve the linearization.

5.1. Benefits of overlapping

In the PCP, the only non-linear constraint Tkl = max
j∈C[k]

l

Tj determines

segment choice closing time. If segments share a same partial consideration set,

for example: C
[k]
l1

= C
[k]
l2

with l1, l2 ∈ L , we can eliminate redundant constraints
as follows:

T1
l = Tl1 ∀l ∈ L

Tkl = TS | S = C
[k]
l ∀k ∈ [2, nl], l ∈ L

TS = max
j∈S

Tj ∀S ∈ CL

where TS is the maximum time of products among offer S and CL is the union
of the segment consideration subsets, determined as follows:

CL =
⋃
l∈L

nl⋃
k=2

C
[k]
l

For example, for two segments with preference lists l1 : u −→ v −→ w and l2 :
v −→ u, respectively, CL is {{u, v}, {u, v, w}}. We denote by nL the cardinality
of CL. In the previous example nL = 2 < (nl1 − 1) + (nl2 − 1) = 3 so that
we can use the same constraint to calculate T2

l1
({u, v}) and T2

l2
({v, u}). The

number of non-linear constraint is nL. It depends on the number of segments,
the number of products considered, and the overlap between segments. A simple
analysis allows us to bound nL between maxl∈L nl−1 when the segments overlap
favourably and

∑
l∈L nl − 1 when there is no overlap.

5.2. Linearization

We now linearize the constraint TS = maxj∈S Tj with S ∈ CL introduced in
the previous section 5.1. Let S0 and S1 be two strict subsets of S (S0, S1 ⊂ S)
such that S = S0 ∪ S1. We naturally have TS = maxj∈S {TS0

,TS1
}. We thus

only have to compare the closing times of products that S0 and S1 are not
sharing to obtain TS .

Suppose for example that we have S = {u, v, w, z}, S0 = {u, v, w} and
S1 = {u, z}. That respects S = S0 ∪ S1. We simply have TS = TS0 if and
only if v or w are open for longer than z. Conversely, TS = TS1

if and only if

13



z is open for longer than v and w. The fact that product u is shared by both
subsets reduces the number of comparisons.

For any set S ∈ CL, it always exists two subsets S0 and S1 such that S = S0∪
S1. In fact, it exists l ∈ L, k ∈ [1, nl] such that S = C

[k]
l . Then S0 = C

[k−1]
l ⊂ S

and S1 = {lk} ⊂ S are two strict subsets admissible because S = S0 ∪ S1.
We use the hierarchy defined in section 4.3 to “ linearize ” the products

comparisons. We introduce the hierarchy binary variables Hu,v = 1 if Hu ≥ Hv
and 0 otherwise with u, v ∈ J .

This leads to the PC mixed integer program (PCMP) with the previous
definition of S0 and S1:

R?PCMP(T?) = max
T

r>QPCP(DL) (PCMP)

s.t. AQPCP(DL) ≤ c
Dkl = Tkl − Tk-1l ∀k ∈ [1, nl], l ∈ L
T1
l = Tl1 ∀l ∈ L

Tkl = TS | S = C
[k]
l ∀k ∈ [2, nl], l ∈ L

S = S0 ∪ S1 ∀S ∈ CL, (S0, S1) ⊂ S
TS ≥ TS0 ∀S ∈ CL, S0 ⊂ S
TS ≥ TS1 ∀S ∈ CL, S1 ⊂ S
TS ≤ TS0

+ τ
∑

u∈S1\S0

v∈S0\S1

Hu,v ∀S ∈ CL, (S0, S1) ⊂ S

TS ≤ TS1
+ τHv,u

∀u ∈ S0 \ S1,∀v ∈ S1 \ S0

∀S ∈ CL, (S0, S1) ⊂ S
Hu,v ∈ {0, 1} ∀u, v ∈ J

The objective function and constraints (1-2) remain the same as in the PCP.
The constraints (3-4) link the closing time of each segment choice to a set. Each
set closing time is determined with products closing time by constraints (5-10)
as described above.

To limit the number of constraints, we must find the strict subsets S0 ⊂
S and S1 ⊂ S with the highest cardinality. We do this when building the
program, and we exploit the overlap between segments. Our model uses overlap
to eventually reduce complexity.

5.3. Use of hierarchy

The hierarchy variables represent a hierarchy between products that could
be fixed before we solve the PCMP. This leads to the PC linear program (PCLP)
for any fixed hierarchy H:
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R?PCLP(H,T?) = max
T

r>QPCP(DL) (PCLP)

s.t. AQPCP(DL) ≤ c
Dkl = Tkl − Tk−1l ∀k ∈ [0, nl], l ∈ L
Tkl = Tj | j = arg max

j∈C[k]
l

Hj ∀k ∈ [0, nl], l ∈ L

For the optimal hierarchy H?, the PCLP and PCP are equivalent. How-
ever, there are n! permutations of the products, and each one is an admissible
hierarchy. Determining the optimal hierarchy is thus a difficult combinatorial
problem.

It is easier to find a good but not necessarily optimal hierarchy. We can for
example:

• Rank products by price;

• Rank products by price divided by number of resources;

• Reuse a hierarchy from a previous PCMP optimal solution;

• Use a hierarchy specified by the company (often called nesting in practice).

Solving the PCLP with a good but not optimal hierarchy allows us to rapidly
obtain a good solution by integrating business-specific knowledge in the model.
Depending on the time available, we can use this solution directly as good
enough solution or use it to speed up the PCMP branch-and-bound algorithm.

6. Numerical experiments

In this section, we conduct numerical experiments to benchmark the follow-
ing approximations:

CDLP (Liu and van Ryzin, 2008): Described in Section 3.3 and solved by
column generation with the Hosseinalifam et al. (2016) subproblem for
preference-list choice behavior.

SDCP (Meissner et al., 2013): We add product constraints for larger subsets
until the objective function no longer changes.

PCLP: Presented in Section 5.3. The hierarchy is established by ranking prod-
ucts by their price and then by their potential demand if price are equals.
The hierarchy is obtained by ranking the products by price.

PCMP: Presented in Section 5.2. An initial solution corresponding to the
previous PCLP solution is given to the branch-and-bound process, as ex-
plained in Section 5.3. The relative integrability gap is set to 10−3.

CDPC: The CDLP approximation with an initial solution given by the PCMP,
as explained in Section 4.3.
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We use the following policies:

OP is the OP policy described in Section 3.3. It is obtained by a lexicographic
sequencing of the CDLP durations D.

PB is the PB policy corresponding to fixing a static limit qj for each product,
as explained in Section 3.3.

PC is the PC policy returned by the PCP, as explained in Section 4.

OD is the OD policy described in Section 3.4. It is obtained by the dynamic
decomposition of Bront et al. (2009) with β = 1.

We use the CDLP, SDCP and CDPC models without any additional constraints.
They thus allow reopening contrarily to the PCMP and PCLP models that
naturally prevent it (see Section 4).

All the notations used in this section are the following:

R is the revenue corresponding to the approximation optimal solution.

CPU is the seconds needed to solve the approximation.

E[R] is the expected revenue of the approximation policy. We use a Monte-
Carlo approach with a discrete-arrival simulation to determine the ex-
pected revenue. We generate random discrete arrivals by generating arrival
timings according to a Poisson process for each segment. Each simulation
is stopped after a number of evaluations specific to the instance.

∆E[R] is the expected revenue relative difference between the approximation
and the CDLP with OP policy.

LF is the load factor equals to
∑
l∈L λl/

∑
i∈I ci. It is simply the sum of arrivals

over the sum of capacities. We build scenarios by varying the load factor.
By multiplying all the λl by the same factor, we obtain the desired LF.

CF is the capacity factor as the percentage of remaining capacity and is thus
equal to

∑
i∈I xi/

∑
i∈I ci.

Because instances are too large for calculating the optimal revenue V?, we
select the best approximations by sorting them by highest expected revenue
(E[R]) and lowest running time (CPU).

6.1. Parallel flights

Our first instance, parallel flights, is illustrated in Figure 3. It is composed
of three parallel flights, of capacity 100, from city A to city B at 09:00, 11:00,
and 20:00. We consider two fares H (150) and L (100) per flight, giving six
products. The reservation period lasts 360 periods. The customers are divided
into four segments, as shown in Table 1.

Table 2 presents the running time and expected revenue for the parallel
flights instance. We first note that approximations return very similar results for
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A B

F09:00

F11:00

F20:00

Product Fare Price
{

1 L 100
2 H 150

{
3 L 100
4 H 150

{
5 L 100
6 H 150

Figure 3: Resources and products for parallel flights.

Segment Arrival ratio Choice behavior

1 0.17LF 1
0.89−−→ 2

2 0.25LF 1
1−→ 3

1−→ 5
0.89−−→ 2

1−→ 4
1−→ 6

3 0.17LF 3
1−→ 5

0.89−−→ 4
1−→ 6

4 0.25LF 5
0.89−−→ 6

0.87−−→ 3
0.89−−→ 4

Table 1: Segments for parallel flights.

a same policy. It means that the three approximations return similar solutions
as we can see in Table B.8 of the e-companion where approximations share the
same approximation revenue and capacity factor. CDLP is an upper bound for
PCP in the general case. The same objective value between CDLP and PCP
means that reopening does not help to increase the revenue. It is only because
of the instance structure. For most of the instances we generate, there is often
no advantage by using reopening such that CDLP and PCP return the same
approximation revenue.

If we now focus on policies, we observe that OD almost always performs
better than others in terms of expected revenue. In average, it is 1.4% better
than the CDLP-OP reference whereas PB and PC are respectively -0.3% and
0.1%. In fact, it is the only dynamic policy and it takes into account the order of
arrivals contrarily to the three other static policies OP, PB and PC. We can also
see the effect of the dynamic aspect in Figure 4 where the OD policy often has
the highest expected capacity factor meaning that it captures more bookings.
It also explains why the OD policy performs better in comparison with other
policies when the load factor is low or high.

However, when we compare the running time, the OD policy is by far the
slowest whereas OP, PC and PB are equivalent. The latest policy are in average
30 times faster than the OD policy for this instance. This long running time
comes from its building process as we can see in the Table B.8 of the e-companion
where the time for building each policy is reported. This is mainly due to
the high number of dynamic program to solve as we explained in Section 3.4.
Moreover, this building time increases with the load factor because it depends
on the number of arrivals, the capacities and the number of resources.

This example also highlights the really unequal performance of the PB policy
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CDLP SDCP PCMP

LF OP PB OD PB OD PC PB OD

0.6
CPU 0.2 0.2 4.5 0.1 4.2 0.1 0.0 4.2
E[R] 23918±0.3% 22995±0.2% 23925±0.3% 22997±0.2% 23915±0.3% 23887±0.3% 23003±0.2% 23904±0.3%
∆E[R] – -3.9% 0.0% -3.9% 0.0% -0.1% -3.8% -0.1%

0.8
CPU 0.0 0.0 6.3 0.0 6.6 0.0 0.0 6.7
E[R] 31312±0.3% 30725±0.2% 31399±0.3% 30717±0.2% 31377±0.3% 31221±0.3% 30737±0.2% 31414±0.3%
∆E[R] – -1.4% 0.6% -1.6% 0.6% -2.5% -1.7% 0.7%

1.0
CPU 0.6 0.6 9.1 0.0 8.6 0.0 0.0 8.9
E[R] 37152±0.2% 37083±0.1% 37650±0.2% 37119±0.2% 37596±0.2% 37780±0.3% 37186±0.2% 37669±0.2%
∆E[R] – 0.0% 2.3% 0.2% 2.1% 1.9% 0.3% 2.2%

1.2
CPU 0.3 0.3 11.0 0.0 10.8 0.0 0.0 10.8
E[R] 43318±0.2% 43436±0.1% 43575±0.2% 43359±0.1% 43452±0.2% 43336±0.2% 43367±0.1% 43455±0.2%
∆E[R] – 0.4% 0.8% 0.4% 1.1% 0.4% 0.4% 0.7%

1.4
CPU 0.0 0.0 12.8 0.0 13.1 0.0 0.0 13.1
E[R] 43481±0.1% 44990±0.0% 44930±0.0% 44987±0.0% 44942±0.0% 43837±0.1% 44991±0.0% 44991±0.0%
∆E[R] – 3.5% 3.3% 3.5% 3.4% 0.8% 3.5% 3.5%

CPU 0.2 0.2 8.7 0.03 8.7 0.0 0.0 8.7

∆E[R] – -0.3% 1.4% -0.3% 1.4% 0.1% -0.3% 1.4%

Table 2: Results for Parallel flights with a 3000 evaluations simulation.
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Figure 4: Expected capacity factor relative difference ∆E[CF] with respects to CDLP-OP for
Parallel flights.

with respect to the load factor. It is outperformed by the CDLP-OP for LF
inferior or equal to one but up to 3% better for higher load factor. This is due
to the fact that PB policy capture exactly the number of bookings provided by
the related approximation. Such that when the load factor is inferior to one,
it will never capture any eventual additional demand even if capacities are not
reached. It also explains that the capacity factor is really low when the load
factor is inferior to one in Figure 4 and in comparison of the other policies.
Nonetheless, when the load factor is up to one, the PB policy becomes a really
efficient policy because capacities are reached in the approximation.
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One important fact regarding the SDCP approximation is that it cannot
return an OP policy even if it is built on offers duration. In fact, the products
constraints added, as explained in Meissner et al. (2013), do not ensure homog-
enized durations across segments. For LF = 1, the second segment offers {3, 5}
and {1, 3, 5} respectively during 89.4 and 270.4 periods while third segments
offers {3, 5} during 360 periods. Products constraints are respected but we can-
not conclude offers duration shared by every segment. That is why the SDCP
solution is only used to build PB and OD policy for numerical experiments.

6.2. Bus-line instance

The bus-line instance has two buses leaving at 07:00 and 11:00 from city A
to cities B, C, and D. Six markets are thus served, as illustrated in Figure 5.

A B C D

Figure 5: Markets for Bus-line instance.

Each bus has a capacity of 30 and there are 2×3 = 6 resources. Two fares (low,
high) are offered for each trip, giving a total of 6× 2× 2 = 24 products. In the
bus industry, tickets are usually available at least two months in advance, so we
set T = 60 days. We consider five segments each considering 4 products. In
total there are 3 × 6 = 18 segments. A complete description of the instance is
given in the e-companion at A.7.

Table 3 shows the running time and expected revenue for the Bus-line in-
stance. We come to the same conclusions as for the previous Parallel flights
instance concerning the equivalence of approximations. We note that the per-
formance of the PB, PC and OD policies over the CDLP-OP improves as load
factor increases. For the PB policy, the reason is the same as for the Parallel
flights instance and is explained in Section 6.1. PC is a more robust policy than
OP when there is nonreopening. The dynamic aspect of OD ensures better ex-
pected revenue than other policies. These respective qualities of PC and OD are
emphasized when the load factor increases because the policy is more selective
contrarily to a low load factor for which most of the demand is accepted.

This example underlines the good performance of the SDCP which is solved
in average 5 times faster than the CDLP. The products closing constraints added
are sufficient to return the same approximation revenue as reported in Table C.9
of the e-companion. We cannot build OP policy but the policies PB and OD
derived perform as well as or better than the CDLP ones for any load factor.

We note that the time to solve m times the PCMP is always faster than
solving one CDLP. We can generalize this result to all the numerical experiments
instances. It ensures that our approach can be used in a dynamic approximation
with a finite difference calculus (see Section 4.2) at least as fast as the CDLP.
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CDLP SDCP PCMP

LF OP PB OD PB OD PC PB OD

0.6
CPU 0.9 0.9 639.0 0.1 701.4 0.1 0.1 565.8
E[R] 12413±0.4% 12039±0.4% 12452±0.4% 12025±0.4% 12460±0.4% 12468±0.4% 12004±0.4% 12443±0.4%
∆E[R] – -3.0% 0.3% -3.1% 0.4% 0.4% -3.3% 0.2%

0.8
CPU 1.2 1.2 936.5 1.0 994.0 0.1 0.1 857.6
E[R] 14909±0.4% 14668±0.4% 15052±0.3% 14678±0.3% 15075±0.3% 14958±0.4% 14655±0.3% 15038±0.3%
∆E[R] – -1.6% 1.0% -1.6% 1.1% 0.3% -1.7% 0.9%

1.0
CPU 0.7 0.7 794.4 0.1 811.4 0.1 0.1 795.6
E[R] 16496.3±0.4% 16528±0.3% 16971±0.3% 16543±0.3% 16965±0.3% 16736±0.4% 16492±0.3% 16979±0.3%
∆E[R] – 0.2% 2.9% 0.3% 2.8% 1.5% 0.0% 2.9%

1.2
CPU 0.9 0.9 1008.4 1.0 882.7 0.1 0.1 866.7
E[R] 17516±0.4% 17883±0.3% 18120±0.2% 17879±0.3% 18186±0.2% 17747±0.4% 17854±0.3% 18097±0.2%
∆E[R] – 2.1% 3.5% 2.1% 3.8% 1.3% 1.9% 3.3%

1.4
CPU 1.0 1.0 1319.3 0.1 1038.8 0.1 0.1 992.6
E[R] 18179.3±0.4% 18848±0.3% 19114±0.3% 18858±0.3% 19133±0.3% 18582±0.4% 18839±0.3% 19104±0.3%
∆E[R] – 3.7% 5.1% 3.7% 5.2% 2.2% 3.6% 5.1%

CPU 0.9 0.9 939.5 0.1 885.6 0.1 0.1 815.6

∆E[R] – 0.3% 2.6% 0.3% 2.7% 1.2% 0.1% 2.5%

Table 3: Results for Bus-line with a 1000 evaluations simulation.

It is clear in Table 3 that building the OD policy requires important post-
processing, as explained in Section 3.4, and thus considerable time. Table C.9
confirms that almost all the running time is spent on building the policy and
not in solving the approximation. Even if a leg decomposition is used, a math-
ematical program must be solved per leg i ∈ I for each remaining capacity ci
and each potential arrival

∑
i∈I ci × LF. Therefore, the number NOD of values

to find and store for the OD policy is:

NOD =
∑
i∈I

ci

(∑
l∈L

λlτ

)

The bus-line instance is relatively small, but NOD is already equal to 6× 30×
(6 × 30LF ) = 32400LF . It explains why the running time increases when the
load factor augments as observed at Table 3.

To investigate the OD tractability, we complicate the initial instance pro-
gressively and report the number of values NOD and the time needed to build
this policy at Table 4. The OD policy is without doubts the best but become

Cumulative changes NOD/LF CPUp

Initial instance 3.2× 104 11min
+ Two more buses per day of capacity 30 1.3× 105 1h43
+ Line has two more cities E and F 3.6× 105 18h50
+ Capacity of buses pass from 30 to 300 (train) 3.6× 107 53h05

Table 4: Time CPUp to build the OD policy for Bus-line cumulative changes.

rapidly intractable when instances grow. Each value to find is often obtained
by solving a complex model as explained in Section 3.4. And also because com-
putationally it is a lot of values to store. In practice, the reservation systems
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may not support this amount of data for a complete network.
In order to take into account the stochastic aspect of the demand without

solving any dynamic approximation, we use re-optimization through the reser-
vation period as introduced in Section 3.3. We split the reservation period in
5, 10 and 20 checkpoints. When calculating the expected revenue, we stop the
simulation at each one of these checkpoints to re-optimize. The policy obtained
at each checkpoint is then valid only until the next checkpoint. We plot at Fig-
ure 6 a comparison between CDLP and PCMP (complete results are available
at Table C.10).

0 5 10 20

0

1

2

E
[R

]

LF= 0.8

0 5 10 20
Number of re-optimizations

LF= 1.0

0 5 10 20

LF= 1.2

CDLP PCMP

Figure 6: Effect of re-optimization on the Bus line instance.

We note that the re-optimization increases the expected revenue of these two
approximations, up to 1.6%. The number of re-optimizations improves results
but seems to reach a maximum with 10 re-optimizations. The gap with the OD
policy is reduced even if this policy is still between 0.3% and 0.8% better.

6.3. Airline instance

The airline instance is based on the Delta Air Lines network limited to eight
major US airports, as illustrated in Figure 7. We start by limiting the instance
on the five largest airports: ATL, LAX, ORD, DFW, and DEN. A complete
description of the instance is given in the e-companion at A.7. Segments were
generated with different considerations (price, flight duration, departure time,
arrival time, product conditions, direct flight) in order to represent real customer
behaviors and to have many different permutations of products.

We do not benchmark the OD policy for this instance because the problem
become intractable for this size, as shown in Section 3.2 and confirmed by tests.

For the SDCP, the number of products constraints is at most
(
L
2

)
× 2

max
l∈L

nl
=

95703× 1024 ≈ 9.8× 107 according to Meissner et al. (2013). Even if this is an
upper bound, the search for the intersections between segments is intractable.
That is why we do not benchmark the SDCP in the Airline instance. The
CDLP with column generation takes much time to solve and PCMP resolution
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Figure 7: Markets of Airline. The five largest airports are represented in bold.

is more difficult. We thus introduce the CDPC and PCLP approximations for
this larger instance.

CDLP PCMP CDPC PCLP

LF OP PB PC PB OP PB PC PB

0.
6

CPU 5054.2 5054.7 5.8 5.9 1652.1 1652.9 3.9 3.8
E[R] 1286871±0.1% 1255551±0.1% 1290783±0.1% 1255436±0.1% 1286643±0.1% 1255663±0.1% 1277509±0.1% 1244115±0.1%
∆E[R] – -2.4% 0.3% -2.4% 0.0% -2.4% -0.7% -3.3%

0.
8

CPU 6212.8 6213.6 8.3 8.3 2601.5 2601.3 4.4 4.4
E[R] 1531298±0.1% 1506555±0.1% 1536923±0.1% 1509048±0.1% 1531944±0.1% 1506016±0.1% 1522267±0.1% 1496016±0.1%
∆E[R] – -1.6% 0.4% -1.5% 0.0% -1.7% -0.6% -2.3%

1.
0

CPU 5095.7 5095.7 12.6 12.6 1583.4 1583.2 5.4 5.4
E[R] 1714632±0.1% 1698282±0.1% 1718955±0.1% 1701311±0.1% 1716096±0.1% 1697962±0.1% 1704529±0.1% 1687989±0.1%
∆E[R] – -1.0% 0.3% -0.8% 0.1% -1.0% -0.6% -1.6%

1.
2

CPU 4648.7 4649.6 8.0 8.0 1692.2 1693.0 5.0 5.0
E[R] 1862207±0.1% 1851161±0.0% 1868050±0.1% 1858369±0.0% 1863181±0.1% 1855136±0.0% 1853486±0.1% 1844254±0.1%
∆E[R] – -0.6% 0.3% -0.2% 0.1% -0.4% -0.5% -1.0%

1.
4

CPU 6651.5 6652.2 9.1 9.1 1800.1 1800.9 5.5 5.5
E[R] 1991666±0.1% 1985538±0.0% 1996496±0.1% 1992705±0.0% 1992173±0.1% 1985050±0.1% 1979837±0.1% 1977171±0.0%
∆E[R] – -0.3% 0.2% 0.1% 0.0% -0.3% -0.6% -0.7%

CPU 5532.6 5533.2 8.7 8.7 1865.9 1866.1 4.8 4.8

∆E[R] – -1.2% 0.3% -1.0% 0.0% -1.2% -0.6% -1.7%

Table 5: Results for Airline with a 500 evaluations simulation.

Table 5 reports the running time and expected revenues of the CDLP, PCMP,
CDPC and PCLP for the Airline instance with different load factor. The full
results are reported in Table D.11 of the e-companion.

We observe the same phenomenon for the PB policy as for the previous
instances. It can not capture the excess of the demand which is problematic for
low factor and rapidly overshadowed by capacity saturation when load factor
increases.

We also note that our approach is computed in less than 15 seconds, which is
remarkable given the instance size. It is much faster than the CDLP and always
returns a slightly better expected revenue. This gain in revenue, in average
0.3%, for the PCMP must be explained by the robustness of closing sales once
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rather than proposing different offers over the reservation period.
Even though, we note that the CDLP always returns a slightly better optimal

revenue in the e-companion at D.11. This may be explained by the integrity
gap chosen for PCMP or the reopening permitted by CDLP.
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Figure 8: Approximation revenue towards time for Airline.

This instance also shows the good quality of our PCLP heuristic. In fact
PCLP is solved twice faster than PCMP and returns an expected revenue only
0.59% lower than the CDLP-OP. However, solving PCMP remains quick and
the difference in expected revenue with this approximation is almost 1.0%.

We also observe the good performance of our CDPC approach. It accelerates
in average by three the CDLP resolution and returns the same ideal revenue (see
e-companion Table D.11) and similar expected revenue, as we can see in Table
5, with a 0.04% difference. We thus obtain in much less time a really good
reopening solution by mixing PCMP and CDLP.

To better illustrate the convergence speed, we plot in Figure 8 the approxi-
mation revenue R of each approximation vs. the solution time for different load
factor. CDLP and CDPC are plot by cherry piking and smoothing their col-
umn generation solving. ∆R+ is the approximation revenue relative difference
in percent with respect to the PCLP when positive.

We observe that our PCMP approximation rapidly returns a very good so-
lution contrarily to the CDLP. The latter takes more than one hour to converge
to solutions found in average in less than 15 s by PCMP.

The gain in time by choosing the PCMP as a initial solution for the CDLP
is perfectly represented in the Figure 8. We note that the remaining column
generation increases only by less than 0.1% the solution and the convergence is
very slow.

23



To test the tractability of our approach, we now increase progressively the
number of cities in the network. Table 6 lists the evolution of the network
characteristics.

# Airports Flights Markets Products Segments Consideration sets

5 115 20 1591 438 1 ≤ 7.93 ≤ 10
6 +DEN 137 30 2724 630 1 ≤ 9.26 ≤ 12
7 +SFO 184 42 4518 896 1 ≤ 10.60 ≤ 14
8 +LAS 220 56 6884 1199 1 ≤ 12.02 ≤ 16

Table 6: Airline characteristics by number of cities considered. The five initial cities are ATL,
LAX, ORD, DFW, and DEN.

Figure 9 reports the running time CPU, on a logarithmic scale, for CDLP,
PCMP CDPC and PCLP and the expected revenue E[R] for different sizes of
network.
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Figure 9: Running seconds CPU and expected revenue E[R] for Airline with scaled number
of cities considered.

The running times are really similar for the load factors experimented. The
faster resolution of the PCMP in comparison with the CDLP is even more
pronounced as the network grows. Indeed, the CDLP is far longer to solve
because each subproblem highly suffers from the increase of products.

The difference between the CDLP and the CDPC running time is consid-
erable. In fact, it corresponds to the time for the CDLP to reach the PCMP
ideal revenue. This shows how much the PCMP convergence (branching the
hierarchy binaries) is faster than the CDLP column generation. Moreover, it
emphasizes the significant benefice of taking the PCMP as initial solution for
the CDLP (CDPC).
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Not surprisingly, the expected revenue is higher as the load factor or the
number of cities increases. We note that the PCMP returns a slightly better
expected revenue (between 0.3% and 0.6%). As for the previous instances, this
illustrates the more robust structure of the PC policy.

We observe that, in average, the PCMP is solved in 60 s for 7 cities and
in 450 s for 8 cities. This noticeable gap underlines the first difficulties for the
PCMP as instances grows. On another side, the PCLP requires respectively
38 s and 60 s and does not seem not as impacted by this scaling. Its solving
time increases smoothly and the expected revenue is only respectively 0.3% and
0.6% lower than CDLP and PCMP. The PCLP seems a good alternative for
largest instance and the expected revenue returned could be improved by better
method to select the hierarchy.

7. Conclusion

We have presented a new static approximation for the CNRM problem with
ranking-based choice behavior. We focus on the preference list because the
multinomial logit model suffers from the independence of irrelevant alterna-
tives. Rather than working with offers, we work directly with the products and
determine when to stop selling each one. For small and medium instances, the
different approximations and associated policies (OP, PC, PB, OD) give similar
results. However, OD can give the best results if the leg decomposition is ap-
propriate for the instance, because of its dynamic adaptation to the stochastic
demand. For larger instances, our approximation outperforms the current ap-
proximations because the policy gives a slightly better expected revenue for a
much shorter solution time. Our approximation is based on a no-reopening pol-
icy. A solution with reopening can be generated by using the PCMP solution
as an initial solution for CDLP. This two-phase approach greatly accelerates
CDLP. For even larger instances, our approximation is designed to become lin-
ear if a hierarchy is fixed. A good hierarchy is in practice not hard to find.
The linear program obtained can be rapidly solved and returns a near-optimal
solution. With its greatly reduced solution time and good-quality policy, our
approximation is a promising approach for practical implementations.
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Appendix A. Instances

Parallel flights Bus-line Airline1

Number of resources 3 6 115
Number of journeys 3 2 115
Number of Markets 1 6 20
Number of products 6 24 1591
Number of segments 4 18 438
Choice behaviors PL PL PL
Largest consideration set 6 4 10
Smallest consideration set 2 4 1
Average consideration set 4.00 4.00 7.93

Table A.7: Instances characteristics. 1 five cities. We use the preference list (PL) choice
behavior as presented in the article.

Instances are entirely described in CSV files at:

http://thibaultbarbier.com
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Appendix B. Parallel flights

Approx > CDLP SDCP PCMP

Policy > OP PB OD PB OD PC PB OD

0.
6

CPUa 0.23 0.05 0.03
CPUp 0.00 0.00 4.27 0.00 4.16 0.02 0.00 4.14
CPU 0.23 0.23 4.50 0.05 4.21 0.05 0.03 4.17

R 23943.4 23943.4 23943.4
E[R] 23918.6±0.28% 22995.2±0.18% 23925.5±0.28% 22997.4±0.17% 23915.8±0.28% 23887.8±0.28% 23003.3±0.17% 23904.1±0.28%
∆E[R] – -3.86 0.03 -3.85 -0.01 -0.13 -3.83 -0.06
CF 0.5321 0.5321 0.5321
E[CF] 0.5315±0.28% 0.5110±0.18% 0.5317±0.28% 0.5111±0.17% 0.5315±0.28% 0.5308±0.28% 0.5112±0.17% 0.5312±0.28%
∆E[CF] – -3.86 0.03 -3.85 -0.01 -0.13 -3.83 -0.06

0.
8

CPUa 0.03 0.03 0.03
CPUp 0.00 0.00 6.27 0.00 6.52 0.00 0.00 6.68
CPU 0.03 0.03 6.30 0.03 6.55 0.03 0.03 6.71

R 31539.6 31539.6 31539.6
E[R] 31206.1±0.23% 30780.4±0.15% 31378.3±0.22% 30721.4±0.14% 31393.1±0.21% 30418.9±0.15% 30686.9±0.14% 31424.4±0.22%
∆E[R] -1.36 0.55 -1.55 0.60 -2.52 -1.66 0.70

CF 0.7009 0.7009 0.7009
E[CF] 0.6935±0.23% 0.6840±0.15% 0.6973±0.22% 0.6827±0.14% 0.6976±0.21% 0.6760±0.15% 0.6819±0.14% 0.6983±0.22%
∆E[CF] – -1.36 0.55 -1.55 0.60 -2.52 -1.66 0.70

1.
0

CPUa 0.55 0.03 0.02
CPUp 0.00 0.00 8.55 0.00 8.57 0.00 0.00 8.85
CPU 0.55 0.55 9.10 0.03 8.60 0.02 0.02 8.87

R 37924.5 37924.5 37924.5
E[R] 37080.4±0.17% 37096.5±0.11% 37928.9±0.20% 37142.2±0.12% 37873.3±0.19% 37793.1±0.21% 37185.9±0.12% 37903.3±0.20%
∆E[R] – 0.04 2.29 0.17 2.14 1.92 0.28 2.22

CF 0.84 0.84 0.84
E[CF] 0.8240±0.17% 0.8244±0.11% 0.8429±0.20% 0.8254±0.12% 0.8416±0.19% 0.8398±0.21% 0.8264±0.12% 0.8423±0.20%
∆E[CF] – 0.04 2.29 0.17 2.14 1.92 0.28 2.22

1.
2

CPUa 0.27 0.2 0.02
CPUp 0.00 0.00 10.68 0.00 10.76 0.00 0.00 10.78
CPU 0.27 0.27 10.95 0.02 10.78 0.02 0.02 10.80

R 44309.4 44309.4 44309.4
E[R] 43237.7±0.14% 43393.9±0.11% 43589.7±0.13% 43428.0±0.11% 43691.4±0.12% 43416.0±0.14% 43393.4±0.11% 43542.9±0.13%
∆E[R] – 0.36 0.81 0.44 1.05 0.41 0.36 0.71

CF 0.9847 0.9847 0.9847
E[CF] 0.9608±0.14% 0.9643±0.11% 0.9687±0.13% 0.9651±0.11% 0.9709±0.12% 0.9648±0.14% 0.9643±0.11% 0.9676±0.13%
∆E[CF] – 0.36 0.81 0.44 1.05 0.41 0.36 0.71

1.
4

CPUa 0.03 0.02 0.04
CPUp 0.00 0.00 12.82 0.00 13.09 0.00 0.00 13.09
CPU 0.03 0.03 12.85 0.02 13.11 0.04 0.04 13.13

R 45000.0 45000.0 45000.0
E[R] 43481.3±0.11% 44990.5±0.01% 44930.0±0.02% 44987.4±0.01% 44942.2±0.01% 43837.1±0.11% 44991.4±0.01% 44990.7±0.01%
∆E[R] – 3.47 3.33 3.46 3.36 0.82 3.47 3.47

CF 1.0000 1.0000 1.0000
E[CF] 0.9663±0.11% 0.9998±0.01% 0.9984±0.02% 0.9997±0.01% 0.9987±0.01% 0.9742±0.11% 0.9998±0.01% 0.9998±0.01%
∆E[CF] – 3.47 3.33 3.46 3.36 0.82 3.47 3.47

CPU 0.22 0.22 8.74 0.03 8.65 0.03 0.03 8.74

∆E[R] – -0.27 1.40 -0.27 1.43 0.10 -0.28 1.41

∆E[CF] – -0.27 1.40 -0.27 1.43 0.10 -0.28 1.41

Table B.8: Parallel flights results

Each approximation is solved in CPUa seconds and return an optimal
revenue R corresponding to a capacity factor CF. We then transform this

solution to policy(ies). This transformation takes CPUp seconds and is then
simulated in a discrete arrivals simulation with 3000 evaluations to obtain an

expected revenue E[R] and expected capacity factor E[CF] for a 95%
confidence interval. The total running time is CPU and we calculate ∆E[CF]
and ∆E[R] the capacity factor and expected revenue relative difference with

respect to CDLP-OP.
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Appendix C. Bus-line

Approx > CDLP SDCP PCMP

Policy > OP PB OD PB OD PC PB OD

0.
6

CPUa 0.89 0.08 0.05
CPUp 0.00 0.00 638.12 0.00 701.34 0.00 0.00 565.74
CPU 0.89 0.89 639.01 0.08 701.42 0.05 0.05 565.79

R 13151.6 13151.6 13151.6
E[R] 12412.6±0.40% 12039.5±0.43% 12451.6±0.41% 12024.8±0.43% 12460.0±0.38% 12467.8±0.44% 12004.2±0.41% 12442.9±0.39%
∆E[R] – -3.01 0.31 -3.12 0.38 0.44 -3.29 0.24

CF 0.8723 0.8723 0.8723
E[CF] 0.8182±0.41% 0.8010±0.43% 0.8304±0.42% 0.7991±0.44% 0.8303±0.39% 0.8183±0.43% 0.7978±0.42% 0.8336±0.39%
∆E[CF] – -2.11 1.48 -2.34 1.47 0.01 -2.49 1.87

0.
8

CPUa 1.16 0.09 0.06
CPUp 0.00 0.00 935.28 0.00 993.93 0.00 0.00 857.53
CPU 1.16 1.16 936.45 0.09 994.02 0.06 0.06 857.59

R 15982.4 15982.4 15982.4
E[R] 14908.6±0.39% 14667.6±0.35% 15052.2±0.33% 14678.0±0.34% 15074.7±0.33% 14958.0±0.39% 14654.8±0.34% 15037.9±0.34%
∆E[R] – -1.62 0.96 -1.55 1.11 0.33 -1.70 0.87

CF 0.9330 0.9330 0.9330
E[CF] 0.8713±0.40% 0.8635±0.33% 0.8945±0.34% 0.8637±0.33% 0.8966±0.33% 0.8756±0.39% 0.8624±0.32% 0.8928±0.34%
∆E[CF] – -0.90 2.66 -0.86 2.91 0.50 -1.02 2.48

1.
0

CPUa 0.74 0.08 0.05
CPUp 0.00 0.00 793.64 0.00 811.28 0.00 0.00 795.50
CPU 0.74 0.74 794.38 0.08 811.36 0.05 0.05 795.55

R 17896.3 17896.3 17896.3
E[R] 16496.3±0.36% 16527.6±0.32% 16971.4±0.31% 16542.7±0.32% 16964.7±0.31% 16736.3±0.37% 16491.7±0.33% 16979.2±0.31%
∆E[R] – 0.19 2.88 0.28 2.84 1.45 -0.03 2.92

CF 0.9385 0.9385 0.9385
E[CF] 0.8622±0.38% 0.8668±0.34% 0.9028±0.33% 0.8683±0.34% 0.9035±0.32% 0.8738±0.39% 0.8662±0.34% 0.9040±0.31%
∆E[CF] – 0.53 4.71 0.71 4.79 1.35 0.46 4.85

1.
2

CPUa 0.89 0.09 0.05
CPUp 0.00 0.00 1007.49 0.00 882.58 0.00 0.00 866.62
CPU 0.89 0.89 1008.38 0.09 882.67 0.05 0.05 866.67

R 19049.7 19049.7 19049.7
E[R] 17515.7±0.35% 17882.5±0.31% 18119.9±0.24% 17879.3±0.30% 18185.9±0.23% 17746.6±0.37% 17853.8±0.29% 18096.7±0.24%
∆E[R] – 2.09 3.45 2.08 3.83 1.32 1.93 3.32

CF 0.9838 0.9838 0.9838
E[CF] 0.9012±0.37% 0.9205±0.32% 0.9388±0.25% 0.9206±0.32% 0.9405±0.24% 0.9089±0.37% 0.9190±0.31% 0.9376±0.25%
∆E[CF] – 2.14 4.18 2.16 4.37 0.85 1.98 4.04

1.
4

CPUa 0.95 0.10 0.03
CPUp 0.00 0.00 1318.78 0.00 1038.65 0.00 0.00 992.59
CPU 0.95 0.95 1319.33 0.10 1038.75 0.03 0.03 992.62

R 19988.7 19988.7 19988.7
E[R] 18179.3±0.35% 18848.0±0.28% 19113.9±0.25% 18857.8±0.29% 19132.5±0.25% 18581.8±0.35% 18838.9±0.28% 19103.7±0.26%
∆E[R] – 3.68 5.14 3.73 5.24 2.21 3.63 5.08

CF 1.0000 1.0000 1.0000
E[CF] 0.9046±0.35% 0.9373±0.30% 0.9508±0.25% 0.9381±0.30% 0.9518±0.25% 0.9202±0.33% 0.9371±0.29% 0.9489±0.25%
∆E[CF] – 3.61 5.11 3.71 5.22 1.73 3.60 4.90

CPU 0.92 0.92 939.51 0.09 885.64 0.05 0.05 5.52

∆E[R] – 0.27 2.55 0.28 2.68 1.15 0.11 2.49

∆E[CF] – 0.65 3.63 0.68 3.77 0.89 0.51 3.63

Table C.9: Bus-line results

Each approximation is solved in CPUa seconds and return an optimal
revenue R corresponding to a capacity factor CF. We then transform this

solution to policy(ies). This transformation takes CPUp seconds and is then
simulated in a discrete arrivals simulation with 1000 evaluations to obtain an

expected revenue E[R] and expected capacity factor E[CF] for a 95%
confidence interval. The total running time is CPU and we calculate ∆E[CF]
and ∆E[R] the capacity factor and expected revenue relative difference with

respect to CDLP-OP.
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CDLP PCMP
Re-optimizations 0 5 10 20 0 5 10 20

LF=0.8 14909±0.4% 14984±0.4% 15058±0.4% 15059±0.4% 14958±0.4% 15043±0.4% 15117±0.4% 15103±0.4%
LF=1.0 16496±0.4% 16594±0.4% 16743±0.4% 16726±0.4% 16736±0.4% 16776±0.4% 16842±0.4% 16841±0.4%
LF=1.2 17516±0.4% 17822±0.4% 17999±0.4% 18017±0.4% 17747±0.4% 17946±0.4% 18123±0.4% 18106±0.4%

Table C.10: Expected revenues with re-optimizations
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Appendix D. Airline

Approx > CDLP PCMP CDPC PCLP

Policy > OP PB PC PB OP PB PC PB

0.
6

CPUa 5054.15 5.84 1652.13 3.84
CPUp 0.02 0.59 0.00 0.02 0.00 0.64 0.02 0.00
CPU 5054.17 5054.74 5.84 5.86 1652.13 1652.87 3.86 3.84
R 1322319.0 1321425.5 1322319.0 1308717.1
∆R – -0.07 0.00 -1.03
E[R] 1286871.1±0.07% 1255551.9±0.06% 1290783.2±0.08% 1255436.7±0.06% 1286643.2±0.07% 1255663.2±0.06% 1277509.3±0.07% 1244115.3±0.06%
∆E[R] – -2.43 0.30 -2.44 -0.02 -2.43 -0.73 -3.32
CF 0.7160 0.7188 0.7160 0.7074
∆CF – 0.40 0.00 -1.20
E[CF] 0.6938±0.07% 0.6794±0.06% 0.6996±0.08% 0.6822±0.07% 0.6937±0.07% 0.6796±0.06% 0.6879±0.08% 0.6721±0.06%
∆E[CF] – -2.08 0.84 -1.67 -0.01 -2.05 -0.85 -3.13

0.
8

CPUa 6212.82 8.26 2601.44 4.43
CPUp 0.02 0.77 0.00 0.00 0.01 0.82 0.00 0.00
CPU 6212.84 6213.59 8.26 8.26 2601.45 2601.26 4.43 4.43
R 1579027.6 1577056.3 1579027.6 1562902.7
∆R – -0.12 0.00 -1.02
E[R] 1531298.4±0.06% 1506554.9±0.05% 1536923.4±0.06% 1509048.0±0.05% 1531943.5±0.06% 1506015.7±0.05% 1522267.3±0.06% 1496016.3±0.05%
∆E[R] – -1.62 0.37 -1.45 0.04 -1.65 -0.59 -2.30
CF 0.8137 0.8134 0.8137 0.8089
∆CF – -0.03 0.00 -0.59
E[CF] 0.7865±0.06% 0.7767±0.05% 0.7913±0.07% 0.7781±0.06% 0.7867±0.06% 0.7764±0.05% 0.7860±0.06% 0.7740±0.06%
∆E[CF] -1.24 0.61 -1.06 0.03 -1.28 -0.06 -1.54

1.
0

CPUa 5095.71 12.55 1583.37 5.37
CPUp 0.01 0.87 0.00 0.02 0.01 0.82 0.00 0.00
CPU 5095.71 5095.71 12.55 12.57 1583.38 1583.19 5.37 5.37
R 1771433.6 1767263.0 1771433.6 1753343.1
∆R – -0.24 0.00 -1.02
E[R] 1714632.3±0.06% 1698282.4±0.05% 1718954.8±0.05% 1701311.1±0.05% 1716095.7±0.06% 1697962.3±0.05% 1704528.5±0.05% 1687988.5±0.05%
∆E[R] – -0.95 0.25 -0.78 0.09 -0.97 -0.59 -1.55
CF 0.8735 0.8707 0.8735 0.8635
∆CF – -0.32 0.00 -1.15
E[CF] 0.8423±0.06% 0.8383±0.05% 0.8461±0.06% 0.8387±0.05% 0.8431±0.06 0.8381±0.05% 0.8384±0.06% 0.8314±0.05%
∆E[CF] – -0.47 0.45 -0.44 0.09 -0.49 -0.46 -1.29

1.
2

CPUa 4648.74 7.95 1692.23 4.99
CPUp 0.00 0.87 0.00 0.00 0.01 0.77 0.00 0.00
CPU 4648.74 4649.62 7.95 7.95 1692.24 1693.00 4.99 4.99
R 1925482.6 1921674.5 1925482.6 1908515.6
∆R – -0.20 0.00 -0.88
E[R] 1862206.9±0.05% 1851161.2±0.04% 1868049.6±0.05% 1858369.4±0.04% 1863181.2±0.1% 1855135.9±0.0% 1853486.0±0.05% 1844254.3±0.05%
∆E[R] – -0.59 0.31 -0.21 0.05 -0.38 -0.47 -0.96
CF 0.9028 0.9003 0.9028 0.8935
∆CF – -0.28 0.00 -1.03
E[CF] 0.8700±0.06% 0.8687±0.05% 0.8753±0.05% 0.8711±0.04% 0.8701±0.05% 0.8685±0.05% 0.8676±0.05% 0.8638±0.05%
∆E[CF] – -0.14 0.61 0.12 0.01 -0.17 -0.27 -0.71

1.
4

CPUa 6651.45 9.05 1800.12 5.52
CPUp 0.00 0.73 0.00 0.00 0.02 0.74 0.00 0.00
CPU 6651.45 6652.18 9.05 9.05 1800.14 1800.86 5.52 5.52
R 2058818.3 2054818.4 2058818.3 2038291.7
∆R – -0.19 0.00 -1.00
E[R] 1991666.0±0.06% 1985537.7±0.04% 1996495.9±0.05% 1992704.9±0.04% 1992172.5±0.06% 1985049.3±0.05% 1979836.8±0.05% 1977170.6±0.04%
∆E[R] – -0.31 0.24 0.05 0.03 -0.33 -0.59 -0.73
CF 0.9268 0.9231 0.9268 0.9157
∆CF – -0.40 0.00 -1.20
E[CF] 0.8932±0.06% 0.8932±0.05% 0.8968±0.05% 0.8952±0.04% 0.8936±0.06% 0.8930±0.06% 0.8890±0.05% 0.8882±0.04%
∆E[CF] – -0.00 0.41 0.22 0.04 -0.02 -0.47 -0.56

CPU 5532.58 5533.17 8.73 8.74 1865.87 1866.10 4.83 4.83

∆E[R] – -1.18 0.29 -0.97 0.04 -1.15 -0.59 -1.72

∆E[CF] – -0.78 0.58 -0.57 0.03 -0.80 -0.42 -1.44

Table D.11: Bus-line results

Each approximation is solved in CPUa seconds and return a revenue R corre-
sponding to a capacity factor CF. We then transform this solution to policy(ies).
This transformation takes CPUp seconds and is then simulated in a discrete
arrivals simulation with 500 evaluations to obtain an expected revenue E[R]
and expected capacity factor E[CF] for a 95% confidence interval. The total
running time is CPU and we calculate ∆E[CF] and ∆E[R] the capacity factor
and expected revenue relative difference with respect to CDLP-OP.
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