67 research outputs found

    Myostatin in the Pathophysiology of Skeletal Muscle

    Get PDF
    Myostatin is an endogenous, negative regulator of muscle growth determining both muscle fiber number and size. The myostatin pathway is conserved across diverse species ranging from zebrafish to humans. Experimental models of muscle growth and regeneration have implicated myostatin as an important mediator of catabolic pathways in muscle cells. Inhibition of this pathway has emerged as a promising therapy for muscle wasting. Here we discuss the recent developments and the controversies in myostatin research, focusing on the molecular and cellular mechanisms underlying the actions of myostatin on skeletal muscle and the potential therapeutic role of myostatin on muscle-related disorders

    Functional muscle impairment in facioscapulohumeral muscular dystrophy is correlated with oxidative stress and mitochondrial dysfunction

    Get PDF
    International audienceFacioscapulohumeral muscular dystrophy (FSHD),the most frequent muscular dystrophy, is an autosomal dominant disease. In most individuals with FSHD, symptoms are restricted to muscles of the face, arms, legs, and trunk. FSHD is genetically linked to contractions of the D4Z4 repeat array causing activation of several genes.One of these maps in the repeat itself and expresses the DUX4 (the double homeobox 4) transcription factor causing a gene deregulation cascade. In addition, analyses of the RNA or protein expression profiles in muscle have indicated deregulations in the oxidative stress response. Since oxidative stress affects peripheral muscle function, we investigated mitochondrial function and oxidative stress in skeletal muscle biopsies and blood samples from patients with FSHD and age-matched healthy controls, and evaluated their association with physical performances.We show that specifically, oxidative stress (lipid peroxidation and protein carbonylation), oxidative damage (lipofuscin accumulation), and antioxidant enzymes (catalase, copper–zinc-dependent super- oxide dismutase, and glutathione reductase) were higher in FSHD than in control muscles. FSHD muscles also presented abnormal mitochondrial function (decreased cytochrome c oxidase activity and reduced ATP synthesis). In addition, the ratio between reduced (GSH) and oxidized glutathione (GSSG) was strongly decreased in all FSHD blood samples as a consequence of GSSG accumulation. Patients with FSHD also had reduced systemic antioxidative response molecules, such as low levels of zinc (a SOD cofactor), selenium (a GPx cofactor involved in the elimination of lipid peroxides), and vitamin C. Half of them had a low ratio of gamma/alpha tocopherol and higher ferritin concentrations. Both systemic oxidative stress and mitochondrial dysfunction were correlated with functional muscle impairment. Mitochondrial ATP production was significantly correlated with both quadriceps endurance (TLimQ) and maximal voluntary contraction (MVCQ) values (rho¼0.79, P¼0.003; rho¼0.62, P¼0.05, respectively). The plasma concentration of oxidized glutathione was negatively correlated with the TLimQ, MVCQ values, and the 2-min walk distance (MWT) values (rho¼0.60, P¼0.03; rho¼0.56, P¼0.04; rho¼0.93, Po0.0001, respectively). Our data characterized oxidative stress in patients with FSHD and demonstrated a correlation with their peripheral skeletal muscle dysfunction. They suggest that antioxidants that might modulate or delay oxidative insult maybe useful in maintaining FSHD muscle functions

    Human muscle cells sensitivity to chikungunya virus infection relies on their glycolysis activity and differentiation stage

    No full text
    International audienceChanges to our environment have led to the emergence of human pathogens such as chikungunya virus. Chikungunya virus infection is today a major public health concern. It is a debilitating chronic disease impeding patients' mobility, affecting millions of people. Disease development relies on skeletal muscle infection. The importance of skeletal muscle in chikungunya virus infection led to the hypothesis that it could serve as a viral reservoir and could participate to virus persistence. Here we questioned the interconnection between skeletal muscle cells metabolism, their differentiation stage and the infectivity of the chikungunya virus. We infected human skeletal muscle stem cells at different stages of differentiation with chikungunya virus to study the impact of their metabolism on virus production and inversely the impact of virus on cell metabolism. We observed that chikungunya virus infectivity is cell differentiation and metabolism-dependent. Chikungunya virus interferes with the cellular metabolism in quiescent undifferentiated and proliferative muscle cells. Moreover, activation of chikungunya infected quiescent muscle stem cells, induces their proliferation, increases glycolysis and amplifies virus production. Therefore, our results showed that Chikungunya virus infectivity and the antiviral response of skeletal muscle cells relies on their energetic metabolism and their differentiation stage. Then, muscle stem cells could serve as viral reservoir producing virus after their activation

    Chromatin loop domain organization within the 4q35 locus in facioscapulohumeral dystrophy patients versus normal human myoblasts

    No full text
    Fascioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder linked to partial deletion of integral numbers of a 3.3 kb polymorphic repeat, D4Z4, within the subtelomeric region of chromosome 4q. Although the relationship between deletions of D4Z4 and FSHD is well established, how this triggers the disease remains unclear. We have mapped the DNA loop domain containing the D4Z4 repeat cluster in human primary myoblasts and in murine–human hybrids. A nuclear matrix attachment site was found located in the vicinity of the repeat. Prominent in normal human myoblasts and nonmuscular human cells, this site is much weaker in muscle cells derived from FSHD patients, suggesting that the D4Z4 repeat array and upstream genes reside in two loops in nonmuscular cells and normal human myoblasts but in only one loop in FSHD myoblasts. We propose a model whereby the nuclear scaffold/matrix attached region regulates chromatin accessibility and expression of genes implicated in the genesis of FSHD

    Identification of a Sesquiterpene Lactone from Arctium lappa Leaves with Antioxidant Activity in Primary Human Muscle Cells

    No full text
    International audienceMany pathologies affecting muscles (muscular dystrophies, sarcopenia, cachexia, renal insufficiency, obesity, diabetes type 2, etc.) are now clearly linked to mechanisms involving oxidative stress. In this context, there is a growing interest in exploring plants to find new natural antioxidants toprevent the appearance and the development of these muscle disorders. In this study, we investigated the antioxidant properties of Arctium lappa leaves in a model of primary human muscle cells exposed to H2O2 oxidative stress. We identified using bioassay-guided purification, onopordopicrin, a sesquiterpene lactone as the main molecule responsible for the antioxidant activity of A. lappa leaf extract. According to our findings, onopordopicrin inhibited the H2O2-mediated loss of muscle cell viability, by limiting the production of free radicals and abolishing DNA cellular damages. Moreover,we showed that onopordopicrin promoted the expression of the nuclear factor-erythroid-2-related factor 2 (Nrf2) downstream target protein heme oxygenase-1 (HO-1) in muscle cells. By using siRNA, we demonstrated that the inhibition of the expression of Nrf2 reduced the protective effect ofonopordopicrin, indicating that the activation of the Nrf2/HO-1 signaling pathway mediates the antioxidant effect of onopordopicrin in primary human muscle cells. Therefore, our results suggest that onopordopicrin may be a potential therapeutic molecule to fight against oxidative stress inpathological specific muscle disorder

    Myoblasts from affected and non-affected FSHD muscles exhibit morphological differentiation defects.: Morphological differentiation defects in FSHD myoblasts

    No full text
    International audienceFacioscapulohumeral dystrophy (FSHD) is a muscular hereditary disease with a prevalence of 1 in 20,000 caused by a partial deletion of a subtelomeric repeat array on chromosome 4q. However, very little is known about the pathogenesis as well as the molecular and biochemical changes linked to the progressive muscle degeneration observed in these patients. Several studies have investigated possible pathophysiological pathways in FSHD myoblasts and mature muscle cells but some of these reports were apparently in contradiction. The discrepancy between these studies may be explained by differences between the sources of myoblasts. Therefore, we decided to thoroughly analyze affected and unaffected muscles from patients with FSHD in terms of vulnerability to oxidative stress, differentiation capacity and morphological abnormalities. We have established a panel of primary myoblast cell cultures from patients affected with FSHD and matched healthy individuals. Our results show that primary myoblasts are more susceptible to an induced oxidative stress than control myoblasts. Moreover, we demonstrate that both types of FSHD primary myoblasts differentiate into multi-nucleated myotubes, which present morphological abnormalities. Whereas control myoblasts fuse to form branched myotubes with aligned nuclei, FSHD myoblasts fuse to form either thin and branched myotubes with aligned nuclei or large myotubes with random nuclei distribution. In conclusion, we postulate that these abnormalities could be responsible for muscle weakness in patients with FSHD and provide an important marker for FSHD myoblasts

    MyoD Distal Regulatory Region Contains an SRF Binding CArG Element Required for MyoD Expression in Skeletal Myoblasts and during Muscle Regeneration

    No full text
    We show here that the distal regulatory region (DRR) of the mouse and human MyoD gene contains a conserved SRF binding CArG-like element. In electrophoretic mobility shift assays with myoblast nuclear extracts, this CArG sequence, although slightly divergent, bound two complexes containing, respectively, the transcription factor YY1 and SRF associated with the acetyltransferase CBP and members of C/EBP family. A single nucleotide mutation in the MyoD-CArG element suppressed binding of both SRF and YY1 complexes and abolished DRR enhancer activity in stably transfected myoblasts. This MyoD-CArG sequence is active in modulating endogeneous MyoD gene expression because microinjection of oligonucleotides corresponding to the MyoD-CArG sequence specifically and rapidly suppressed MyoD expression in myoblasts. In vivo, the expression of a transgenic construct comprising a minimal MyoD promoter fused to the DRR and β-galactosidase was induced with the same kinetics as MyoD during mouse muscle regeneration. In contrast induction of this reporter was no longer seen in regenerating muscle from transgenic mice carrying a mutated DRR-CArG. These results show that an SRF binding CArG element present in MyoD gene DRR is involved in the control of MyoD gene expression in skeletal myoblasts and in mature muscle satellite cell activation during muscle regeneration
    • …
    corecore