12 research outputs found

    Un transporteur du magnésium

    No full text

    IFN Regulatory Factors 4 and 8 Expression in the NOD Mouse

    Get PDF
    Dendritic cells (DCs) contribute to islet inflammation and its progression to diabetes in NOD mouse model and human. DCs play a crucial role in the presentation of autoantigen and activation of diabetogenic T cells, and IRF4 and IRF8 are crucial genes involved in the development of DCs. We have therefore investigated the expression of these genes in splenic DCs during diabetes progression in NOD mice. We found that IRF4 expression was upregulated in splenocytes and in splenic CD11c+ DCs of NOD mice as compared to BALB/c mice. In contrast, IRF8 gene expression was higher in splenocytes of NOD mice whereas its expression was similar in splenic CD11c+ DCs of NOD and BALB/c mice. Importantly, levels of IRF4 and IRF8 expression were lower in tolerogenic bone marrow derived DCs (BMDCs) generated with GM-CSF as compared to immunogenic BMDCs generated with GM-CSF and IL-4. Analysis of splenic DCs subsets indicated that high expression of IRF4 was associated with increased levels of CD4+CD8α−IRF4+CD11c+ DCs but not CD4−CD8α+IRF8+CD11c+ DCs in NOD mice. Our results showed that IRF4 expression was up-regulated in NOD mice and correlated with the increased levels of CD4+CD8α− DCs, suggesting that IRF4 may be involved in abnormal DC functions in type 1 diabetes in NOD mice

    Preclinical Immunogenicity and Efficacy of a Multiple Antigen-Presenting System (MAPSTM) SARS-CoV-2 Vaccine

    No full text
    Despite the remarkable success of SARS-CoV-2 vaccines, the rise of variants, some of which are more resistant to the effects of vaccination, highlights the potential need for additional COVID-19 vaccines. We used the Multiple Antigen-Presenting System (MAPS) technology, in which proteins are presented on a polysaccharide polymer to induce antibody, Th1, Th17 and CD8+ T cell responses, to engineer a novel vaccine targeting SARS-CoV-2. This vaccine contains a fragment of the spike (S) protein receptor-binding domain (RBD) sequence of the original D614G strain and was used to immunize nonhuman primates (NHP) for assessment of immunological responses and protection against SARS-CoV-2 challenge. The SARS-CoV-2 MAPS vaccine generated robust neutralizing antibodies as well as Th1, Th17 and cytotoxic CD8 T-cell responses in NHPs. Furthermore, MAPS-immunized NHPs had significantly lower viral loads in the nasopharynx and lung compared to control animals. Taken together, these findings support the use of the MAPS platform to make a SARS-CoV-2 vaccine. The nature of the platform also could enable its use for the inclusion of different variants in a single vaccine

    mRNA therapy restores euglycemia and prevents liver tumors in murine model of glycogen storage disease

    No full text
    International audienceAbstract Glycogen Storage Disease 1a (GSD1a) is a rare, inherited metabolic disorder caused by deficiency of glucose 6-phosphatase (G6Pase-α). G6Pase-α is critical for maintaining interprandial euglycemia. GSD1a patients exhibit life-threatening hypoglycemia and long-term liver complications including hepatocellular adenomas (HCAs) and carcinomas (HCCs). There is no treatment for GSD1a and the current standard-of-care for managing hypoglycemia (Glycosade ® /modified cornstarch) fails to prevent HCA/HCC risk. Therapeutic modalities such as enzyme replacement therapy and gene therapy are not ideal options for patients due to challenges in drug-delivery, efficacy, and safety. To develop a new treatment for GSD1a capable of addressing both the life-threatening hypoglycemia and HCA/HCC risk, we encapsulated engineered mRNAs encoding human G6Pase-α in lipid nanoparticles. We demonstrate the efficacy and safety of our approach in a preclinical murine model that phenotypically resembles the human condition, thus presenting a potential therapy that could have a significant therapeutic impact on the treatment of GSD1a
    corecore