1,100 research outputs found

    A limit on nonlocality in any world in which communication complexity is not trivial

    Full text link
    Bell proved that quantum entanglement enables two space-like separated parties to exhibit classically impossible correlations. Even though these correlations are stronger than anything classically achievable, they cannot be harnessed to make instantaneous (faster than light) communication possible. Yet, Popescu and Rohrlich have shown that even stronger correlations can be defined, under which instantaneous communication remains impossible. This raises the question: Why are the correlations achievable by quantum mechanics not maximal among those that preserve causality? We give a partial answer to this question by showing that slightly stronger correlations would result in a world in which communication complexity becomes trivial.Comment: 13 pages, no figure

    Communication-aware adaptive parareal with application to a nonlinear hyperbolic system of partial dierential equations

    Get PDF
    In the strong scaling limit, the performance of conventional spatial domain decomposition techniques for the parallel solution of PDEs saturates. When sub-domains become small, halo-communication and other overheard come to dominate. A potential path beyond this scaling limit is to introduce domain-decomposition in time, with one such popular approach being the Parareal algorithm which has received a lot of attention due to its generality and potential scalability. Low efficiency, particularly on convection dominated problems, has however limited the adoption of the method. In this paper we introduce a new strategy, Communication Aware Adaptive Parareal (CAAP) to overcome some of the challenges. With CAAP, we choose time-subdomains short enough that convergence of the Parareal algorithm is quick, yet long enough that the overheard of communicating time-subdomain interfaces does not induce a new limit to parallel speed-up. Furthermore, we propose an adaptive work scheduling algorithm that overlaps consecutive Parareal cycles and decouples the number of time-subdomains and number of active node-groups in an efficient manner to allow for comparatively high parallel eciency. We demonstrate the viability of CAAP trough the parallel-in-time integration of a hyperbolic system of PDEs in the form of the two-dimensional nonlinear shallow-water wave equation solved using a 3rd order accurate WENO-RK discretization. For the computational cheap approximate operator needed as a preconditioner in the Parareal corrections we use a lower order Roe type discretization. Time-parallel integration of purely hyperbolic type evolution problems is traditionally considered impractical. Trough large-scale numerical experiments we demonstrate that with CAAP, it is possible not only to obtain time-parallel speedup on this class of evolution problems, but also that we may obtain parallel acceleration beyond what is possible using conventional spatial domain-decomposition techniques alone. The approach is widely applicable for parallel-in-time integration over long time domains, regardless of the class of evolution problem

    Comparative population structure of <i>Plasmodium malariae</i> and <i>Plasmodium falciparum</i> under different transmission settings in Malawi

    Get PDF
    &lt;b&gt;Background:&lt;/b&gt; Described here is the first population genetic study of Plasmodium malariae, the causative agent of quartan malaria. Although not as deadly as Plasmodium falciparum, P. malariae is more common than previously thought, and is frequently in sympatry and co-infection with P. falciparum, making its study increasingly important. This study compares the population parameters of the two species in two districts of Malawi with different malaria transmission patterns - one seasonal, one perennial - to explore the effects of transmission on population structures. &lt;BR/&gt; &lt;b&gt;Methods:&lt;/b&gt; Six species-specific microsatellite markers were used to analyse 257 P. malariae samples and 257 P. falciparum samples matched for age, gender and village of residence. Allele sizes were scored to within 2 bp for each locus and haplotypes were constructed from dominant alleles in multiple infections. Analysis of multiplicity of infection (MOI), population differentiation, clustering of haplotypes and linkage disequilibrium was performed for both species. Regression analyses were used to determine association of MOI measurements with clinical malaria parameters. &lt;BR/&gt; &lt;b&gt;Results:&lt;/b&gt; Multiple-genotype infections within each species were common in both districts, accounting for 86.0% of P. falciparum and 73.2% of P. malariae infections and did not differ significantly with transmission setting. Mean MOI of P. falciparum was increased under perennial transmission compared with seasonal (3.14 vs 2.59, p = 0.008) and was greater in children compared with adults. In contrast, P. malariae mean MOI was similar between transmission settings (2.12 vs 2.11) and there was no difference between children and adults. Population differentiation showed no significant differences between villages or districts for either species. There was no evidence of geographical clustering of haplotypes. Linkage disequilibrium amongst loci was found only for P. falciparum samples from the seasonal transmission setting. &lt;BR/&gt; &lt;b&gt;Conclusions:&lt;/b&gt; The extent of similarity between P. falciparum and P. malariae population structure described by the high level of multiple infection, the lack of significant population differentiation or haplotype clustering and lack of linkage disequilibrium is surprising given the differences in the biological features of these species that suggest a reduced potential for out-crossing and transmission in P. malariae. The absence of a rise in P. malariae MOI with increased transmission or a reduction in MOI with age could be explained by differences in the duration of infection or degree of immunity compared to P. falciparum

    LLAMA : stellar populations in the nuclei of ultra-hard X-ray-selected AGN and matched inactive galaxies

    Get PDF
    The relation between nuclear (.50 pc) star formation and nuclear galactic activity is still elusive; theoretical models predict a link between the two, but it is unclear whether active galactic nuclei (AGNs) should appear at the same time, before, or after nuclear star formation activity. We present a study of this relation in a complete, volume-limited sample of nine of the most luminous (log L14−195 keV > 1042.5 erg s−1 ) local AGNs (the LLAMA sample), including a sample of 18 inactive control galaxies (six star-forming; 12 passive) that are matched by Hubble type, stellar mass (9.5 . log M?/M . 10.5), inclination, and distance. This allows us to calibrate our methods on the control sample and perform a differential analysis between the AGN and control samples. We performed stellar population synthesis on VLT/X-shooter spectra in an aperture corresponding to a physical radius of ≈150 pc. We find young (.30 Myr) stellar populations in seven out of nine AGNs and in four out of six star-forming control galaxies. In the non-star-forming control population, in contrast, only two out of 12 galaxies show such a population. We further show that these young populations are not indicative of ongoing star formation, providing evidence for models that see AGN activity as a consequence of nuclear star formation. Based on the similar nuclear star formation histories of AGNs and star-forming control galaxies, we speculate that the latter may turn into the former for some fraction of their time. Under this assumption, and making use of the volume completeness of our sample, we infer that the AGN phase lasts for about 5% of the nuclear starburst phase

    Ionized outflows in local luminous AGN : what are the real densities and outflow rates?

    Get PDF
    We report on the determination of electron densities, and their impact on the outflow masses and rates, measured in the central few hundred parsecs of 11 local luminous active galaxies. We show that the peak of the integrated line emission in the active galactic nuclei (AGN) is significantly offset from the systemic velocity as traced by the stellar absorption features, indicating that the profiles are dominated by outflow. In contrast, matched inactive galaxies are characterized by a systemic peak and weaker outflow wing. We present three independent estimates of the electron density in these AGN, discussing the merits of the different methods. The electron density derived from the [S II] doublet is significantly lower than that found with a method developed in the last decade using auroral and transauroral lines, as well as a recently introduced method based on the ionization parameter. The reason is that, for gas photoionized by an AGN, much of the [S II] emission arises in an extended partially ionized zone where the implicit assumption that the electron density traces the hydrogen density is invalid. We propose ways to deal with this situation and we derive the associated outflow rates for ionized gas, which are in the range 0.001–0.5 M yr−1 for our AGN sample. We compare these outflow rates to the relation between M˙ out and LAGN in the literature, and argue that it may need to be modified and rescaled towards lower mass outflow rates

    Genetic Admixture and Population Substructure in Guanacaste Costa Rica

    Get PDF
    The population of Costa Rica (CR) represents an admixture of major continental populations. An investigation of the CR population structure would provide an important foundation for mapping genetic variants underlying common diseases and traits. We conducted an analysis of 1,301 women from the Guanacaste region of CR using 27,904 single nucleotide polymorphisms (SNPs) genotyped on a custom Illumina InfiniumII iSelect chip. The program STRUCTURE was used to compare the CR Guanacaste sample with four continental reference samples, including HapMap Europeans (CEU), East Asians (JPT+CHB), West African Yoruba (YRI), as well as Native Americans (NA) from the Illumina iControl database. Our results show that the CR Guanacaste sample comprises a three-way admixture estimated to be 43% European, 38% Native American and 15% West African. An estimated 4% residual Asian ancestry may be within the error range. Results from principal components analysis reveal a correlation between genetic and geographic distance. The magnitude of linkage disequilibrium (LD) measured by the number of tagging SNPs required to cover the same region in the genome in the CR Guanacaste sample appeared to be weaker than that observed in CEU, JPT+CHB and NA reference samples but stronger than that of the HapMap YRI sample. Based on the clustering pattern observed in both STRUCTURE and principal components analysis, two subpopulations were identified that differ by approximately 20% in LD block size averaged over all LD blocks identified by Haploview. We also show in a simulated association study conducted within the two subpopulations, that the failure to account for population stratification (PS) could lead to a noticeable inflation in the false positive rate. However, we further demonstrate that existing PS adjustment approaches can reduce the inflation to an acceptable level for gene discovery

    Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition in Breast Cancer

    Get PDF
    Matrix metalloproteinases (MMPs) degrade and modify the extracellular matrix (ECM) as well as cell-ECM and cell-cell contacts, facilitating detachment of epithelial cells from the surrounding tissue. MMPs play key functions in embryonic development and mammary gland branching morphogenesis, but they are also upregulated in breast cancer, where they stimulate tumorigenesis, cancer cell invasion and metastasis. MMPs have been investigated as potential targets for cancer therapy, but clinical trials using broad-spectrum MMP inhibitors yielded disappointing results, due in part to lack of specificity toward individual MMPs and specific stages of tumor development. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells take on the characteristics of invasive mesenchymal cells, and activation of EMT has been implicated in tumor progression. Recent findings have implicated MMPs as promoters and mediators of developmental and pathogenic EMT processes in the breast. In this review, we will summarize recent studies showing how MMPs activate EMT in mammary gland development and in breast cancer, and how MMPs mediate breast cancer cell motility, invasion, and EMT-driven breast cancer progression. We also suggest approaches to inhibit these MMP-mediated malignant processes for therapeutic benefit

    Cardiac procedural myocardial injury, infarction, and mortality in patients undergoing elective percutaneous coronary intervention: a pooled analysis of patient-level data

    Get PDF
    AIMS: The prognostic importance of cardiac procedural myocardial injury and myocardial infarction (MI) in chronic coronary syndrome (CCS) patients undergoing elective percutaneous coronary intervention (PCI) is still debated. METHODS AND RESULTS: We analysed individual data of 9081 patients undergoing elective PCI with normal pre-PCI baseline cardiac troponin (cTn) levels. Multivariate models evaluated the association between post-PCI elevations in cTn and 1-year mortality, while an interval analysis evaluated the impact of the size of the myocardial injury on mortality. Our analysis was performed in the overall population and also according to the type of cTn used [52.0% had high-sensitivity cTn (hs-cTn)]. Procedural myocardial injury, as defined by the Fourth Universal Definition of MI (UDMI) [post-PCI cTn elevation ≥1 × 99th percentile upper reference limit (URL)], occurred in 52.8% of patients and was not associated with 1-year mortality [adj odds ratio (OR), 1.35, 95% confidence interval (CI) (0.84-1.77), P = 0.21]. The association between post-PCI cTn elevation and 1-year mortality was significant starting ≥3 × 99th percentile URL. Major myocardial injury defined by post-PCI ≥5 × 99th percentile URL occurred in 18.2% of patients and was associated with a two-fold increase in the adjusted odds of 1-year mortality [2.29, 95% CI (1.32-3.97), P = 0.004]. In the subset of patients for whom periprocedural evidence of ischaemia was collected (n = 2316), Type 4a MI defined by the Fourth UDMI occurred in 12.7% of patients and was strongly associated with 1-year mortality [adj OR 3.21, 95% CI (1.42-7.27), P = 0.005]. We also present our results according to the type of troponin used (hs-cTn or conventional troponin). CONCLUSION: Our analysis has demonstrated that in CCS patients with normal baseline cTn levels, the post-PCI cTn elevation of ≥5 × 99th percentile URL used to define Type 4a MI is associated with 1-year mortality and could be used to detect 'major' procedural myocardial injury in the absence of procedural complications or evidence of new myocardial ischaemia

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    Get PDF
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium-and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a 'very high risk' of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate 'rapid' management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement. Decision support tools AS-ISK Hazard identification Non-native species Risk analysis Climate changepublishedVersio
    corecore