1,949 research outputs found

    The VTRE Program: An overview

    Get PDF
    The Vented Tank Resupply Experiment (VTRE) Program is a NASA In-Space Technology Experiments Program (IN-STEP) that will develop, and fly a small, low cost space experiment to investigate, develop, and acquire needed data to extend and advance the technology of capillary vane fluid management devices to applications requiring direct venting of gas from tanks in low-gravity. GAS venting may be required for control of pressure, or to allow low-g fill of a tank with liquid while holding a constant tank back pressure by gas venting. Future space applications requiring these fluid management capabilities include both cryogenic and Earth storable fluid systems. The experiment is planned as a Shuttle Hitchhiker payload, and will be developed around two transparent tanks equipped with capillary vane devices between which a test liquid can be transferred. Experiments will be conducted for vented transfer, direct venting, stability of liquid positioning to accelerations within and significantly above the design values, and fluid reorientation by capillary wicking of liquid into the vane device following intentional liquid upset

    On-orbit cryogenic fluid transfer

    Get PDF
    A number of future NASA and DOD missions have been identified that will require, or could benefit from resupply of cryogenic liquids in orbit. The most promising approach for accomplishing cryogenic fluid transfer in the weightlessness environment of space is to use the thermodynamic filling technique. This approach involves initially reducing the receiver tank temperature by using several charge hold vent cycles followed by filling the tank without venting. Martin Marietta Denver Aerospace, under contract to the NASA Lewis Research Center, is currently developing analytical models to describe the on orbit cryogenic fluid transfer process. A detailed design of a shuttle attached experimental facility, which will provide the data necessary to verify the analytical models, is also being performed

    Development of advanced material composites for use as internal insulation for LH2 tanks (gas layer concept)

    Get PDF
    A program is described that was conducted to develop an internal insulation system for potential application to the liquid hydrogen tanks of a reusable booster, where the tanks would be subjected to repeated high temperatures. The design of the internal insulation is based on a unique gas layer concept, in which capillary or surface tension effects are used to maintain a stable gas layer, within a cellular core structure, between the tank wall and the contained liquid hydrogen. Specific objectives were to select materials for insulation systems that would be compatible with wall temperatures of 350 F and 650 F during reentry into the earth's atmosphere, and to fabricate and test insulation systems under conditions simulating the operating environment. A materials test program was conducted to evaluate the properties of candidate materials at elevated temperatures and at the temperature of liquid hydrogen, and to determine the compatibility of the materials with a hydrogen atmosphere at the appropriate elevated temperature. The materials that were finally selected included Kapton polyimide films, silicone adhesives, fiber glass batting, and in the case of the 350 F system, Teflon film

    Revised reference model for nitric acid

    Get PDF
    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision, and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter

    Limb radiance inversion radiometer

    Get PDF
    Engineering and scientific objectives of the LRIR experiment are described along with system requirements, subassemblies, and experiment operation. The mechanical, electrical, and thermal interfaces between the LRIR experiment and the Nimbus F spacecraft are defined. The protoflight model qualification and acceptance test program is summarized. Test data is presented in tables to give an overall view of each test parameter and possible trends of the performance of the LRIR experiment. Conclusions and recommendations are included

    The synthesis of 15 mu infrared horizon radiance profiles from meteorological data inputs

    Get PDF
    Computational computer program for modeling infrared horizon radiance profile using pressure and temperature profile input

    Intercomparisons of HIRDLS, COSMIC and SABER for the detection of stratospheric gravity waves

    Get PDF
    Colocated temperature profiles from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC), High Resolution Dynamics Limb Sounder (HIRDLS) and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) mission are compared over the years 2006–2007 to assess their relative performances for the detection of stratospheric gravity waves. Two methods are used, one based on a simple comparison of the standard deviations and correlation coefficients of high-pass filtered profiles from each instrument, and the other based on Stockwell transform analyses of the profiles for vertical wavelength and temperature perturbation scales. It is concluded, when allowing for their different vertical resolution capabilites, that the three instruments reproduce each other's results for magnitude and vertical scale of perturbations to within their resolution limits in approximately 50 % of cases, but with a positive frequency and temperature bias in the case of COSMIC. This is possibly indicative of a slightly higher vertical resolution being available to the constellation than estimated
    • …
    corecore