313 research outputs found

    Brief Measure of Student-Instructor Rapport Predicts Student Success in Online Courses

    Get PDF
    At all educational levels, researchers show a positive link between student-teacher rapport and student outcomes. However, few scales have been developed to measure rapport at the university level and no study has examined the link between student-instructor rapport and objective measures of student learning in online courses. We developed a brief, 9-item rapport scale, the Student-Instructor Rapport Scale-9 (SIRS-9), and administered it, along with an existing “connectedness” scale, to university students taking online courses. Student outcome measures included three course evaluation questions and student’s final course grade. Results support the internal consistency, concurrent validity, and predictive validity of SIRS-9 scores. The research and practical usefulness of the SIRS-9 are discussed

    Fe XVII X-ray Line Ratios for Accurate Astrophysical Plasma Diagnostics

    Full text link
    New laboratory measurements using an Electron Beam Ion Trap (EBIT) and an x-ray microcalorimeter are presented for the n=3 to n=2 Fe XVII emission lines in the 15 {\AA} to 17 {\AA} range, along with new theoretical predictions for a variety of electron energy distributions. This work improves upon our earlier work on these lines by providing measurements at more electron impact energies (seven values from 846 to 1185 eV), performing an in situ determination of the x-ray window transmission, taking steps to minimize the ion impurity concentrations, correcting the electron energies for space charge shifts, and estimating the residual electron energy uncertainties. The results for the 3C/3D and 3s/3C line ratios are generally in agreement with the closest theory to within 10%, and in agreement with previous measurements from an independent group to within 20%. Better consistency between the two experimental groups is obtained at the lowest electron energies by using theory to interpolate, taking into account the significantly different electron energy distributions. Evidence for resonance collision effects in the spectra is discussed. Renormalized values for the absolute cross sections of the 3C and 3D lines are obtained by combining previously published results, and shown to be in agreement with the predictions of converged R-matrix theory. This work establishes consistency between results from independent laboratories and improves the reliability of these lines for astrophysical diagnostics. Factors that should be taken into account for accurate diagnostics are discussed, including electron energy distribution, polarization, absorption/scattering, and line blends.Comment: 29 pages, including 7 figure

    EUV spectra of highly-charged ions W54+^{54+}-W63+^{63+} relevant to ITER diagnostics

    Full text link
    We report the first measurements and detailed analysis of extreme ultraviolet (EUV) spectra (4 nm to 20 nm) of highly-charged tungsten ions W54+^{54+} to W63+^{63+} obtained with an electron beam ion trap (EBIT). Collisional-radiative modelling is used to identify strong electric-dipole and magnetic-dipole transitions in all ionization stages. These lines can be used for impurity transport studies and temperature diagnostics in fusion reactors, such as ITER. Identifications of prominent lines from several W ions were confirmed by measurement of isoelectronic EUV spectra of Hf, Ta, and Au. We also discuss the importance of charge exchange recombination for correct description of ionization balance in the EBIT plasma.Comment: 11 pages, 4 figure

    Coulomb explosion sputtering of selectively oxidized Si

    Full text link
    We have studied multiply charged Arq+ ion induced potential sputtering of a unique system comprising of coexisting Silicon and Silicon oxide surfaces. Such surfaces are produced by oblique angle oxygen ion bombardment on Si(100), where ripple structures are formed and one side of each ripple gets more oxidized. It is observed that higher the potential energy of Arq+ ion, higher the sputtering yield of the non conducting (oxide) side of the ripple as compared to the semiconducting side. The results are explained in terms of Coulomb explosion model where potential sputtering depends on the conductivity of the ion impact sites.Comment: 9 pages and 3 figure
    • …
    corecore