New laboratory measurements using an Electron Beam Ion Trap (EBIT) and an
x-ray microcalorimeter are presented for the n=3 to n=2 Fe XVII emission lines
in the 15 {\AA} to 17 {\AA} range, along with new theoretical predictions for a
variety of electron energy distributions. This work improves upon our earlier
work on these lines by providing measurements at more electron impact energies
(seven values from 846 to 1185 eV), performing an in situ determination of the
x-ray window transmission, taking steps to minimize the ion impurity
concentrations, correcting the electron energies for space charge shifts, and
estimating the residual electron energy uncertainties. The results for the
3C/3D and 3s/3C line ratios are generally in agreement with the closest theory
to within 10%, and in agreement with previous measurements from an independent
group to within 20%. Better consistency between the two experimental groups is
obtained at the lowest electron energies by using theory to interpolate, taking
into account the significantly different electron energy distributions.
Evidence for resonance collision effects in the spectra is discussed.
Renormalized values for the absolute cross sections of the 3C and 3D lines are
obtained by combining previously published results, and shown to be in
agreement with the predictions of converged R-matrix theory. This work
establishes consistency between results from independent laboratories and
improves the reliability of these lines for astrophysical diagnostics. Factors
that should be taken into account for accurate diagnostics are discussed,
including electron energy distribution, polarization, absorption/scattering,
and line blends.Comment: 29 pages, including 7 figure