79 research outputs found

    SU(3)-instantons and G2,Spin(7)G_2, Spin(7)-heterotic string solitons

    Full text link
    Necessary and sufficient conditions to the existence of a hermitian connection with totally skew-symmetric torsion and holonomy contained in SU(3) are given. Non-compact solution to the supergravity-type I equations of motion with non-zero flux and non-constant dilaton is found in dimensions 6. Non-conformally flat non-compact solutions to the supergravity-type I equations of motion with non-zero flux and non-constant dilaton are found in dimensions 7 and 8. A Riemannian metric with holonomy contained in G2G_2 arises from our considerations and Hitchin's flow equations, which seems to be new. Compact examples of SU(3),G2SU(3), G_2 and Spin(7)Spin(7) instanton satisfying the anomaly cancellation conditions are presented.Comment: LaTex, 22 pages, Corrected anomaly cancellation, final version to appear in Commun. Math. Phy

    Kappa symmetry, generalized calibrations and spinorial geometry

    Full text link
    We extend the spinorial geometry techniques developed for the solution of supergravity Killing spinor equations to the kappa symmetry condition for supersymmetric brane probe configurations in any supergravity background. In particular, we construct the linear systems associated with the kappa symmetry projector of M- and type II branes acting on any Killing spinor. As an example, we show that static supersymmetric M2-brane configurations which admit a Killing spinor representing the SU(5) orbit of Spin(10,1)Spin(10,1) are generalized almost hermitian calibrations and the embedding map is pseudo-holomorphic. We also present a bound for the Euclidean action of M- and type II branes embedded in a supersymmetric background with non-vanishing fluxes. This leads to an extension of the definition of generalized calibrations which allows for the presence of non-trivial Born-Infeld type of fields in the brane actions.Comment: 9 pages, latex, references added and minor change

    Imaging Biomarkers in Alzheimer's Disease: A Practical Guide for Clinicians.

    Get PDF
    Although recent developments in imaging biomarkers have revolutionized the diagnosis of Alzheimer's disease at early stages, the utility of most of these techniques in clinical setting remains unclear. The aim of this review is to provide a clear stepwise algorithm on using multitier imaging biomarkers for the diagnosis of Alzheimer's disease to be used by clinicians and radiologists for day-to-day practice. We summarized the role of most common imaging techniques and their appropriate clinical use based on current consensus guidelines and recommendations with brief sections on acquisition and analysis techniques for each imaging modality. Structural imaging, preferably MRI or alternatively high resolution CT, is the essential first tier of imaging. It improves the accuracy of clinical diagnosis and excludes other potential pathologies. When the results of clinical examination and structural imaging, assessed by dementia expert, are still inconclusive, functional imaging can be used as a more advanced option. PET with ligands such as amyloid tracers and 18F-fluorodeoxyglucose can improve the sensitivity and specificity of diagnosis particularly at the early stages of the disease. There are, however, limitations in using these techniques in wider community due to a combination of lack of facilities and expertise to interpret the findings. The role of some of the more recent imaging techniques including tau imaging, functional MRI, or diffusion tensor imaging in clinical practice, remains to be established in the ongoing and future studies.No other source of fundin

    Vanishing Preons in the Fifth Dimension

    Get PDF
    We examine supersymmetric solutions of N=2, D=5 gauged supergravity coupled to an arbitrary number of abelian vector multiplets using the spinorial geometry method. By making use of methods developed in hep-th/0606049 to analyse preons in type IIB supergravity, we show that there are no solutions preserving exactly 3/4 of the supersymmetry.Comment: 19 pages, latex. Reference added, and further modification to the introductio

    The spinorial geometry of supersymmetric heterotic string backgrounds

    Full text link
    We determine the geometry of supersymmetric heterotic string backgrounds for which all parallel spinors with respect to the connection ^\hat\nabla with torsion HH, the NS\otimesNS three-form field strength, are Killing. We find that there are two classes of such backgrounds, the null and the timelike. The Killing spinors of the null backgrounds have stability subgroups K\ltimes\bR^8 in Spin(9,1)Spin(9,1), for K=Spin(7)K=Spin(7), SU(4), Sp(2)Sp(2), SU(2)×SU(2)SU(2)\times SU(2) and {1}\{1\}, and the Killing spinors of the timelike backgrounds have stability subgroups G2G_2, SU(3), SU(2) and {1}\{1\}. The former admit a single null ^\hat\nabla-parallel vector field while the latter admit a timelike and two, three, five and nine spacelike ^\hat\nabla-parallel vector fields, respectively. The spacetime of the null backgrounds is a Lorentzian two-parameter family of Riemannian manifolds BB with skew-symmetric torsion. If the rotation of the null vector field vanishes, the holonomy of the connection with torsion of BB is contained in KK. The spacetime of time-like backgrounds is a principal bundle PP with fibre a Lorentzian Lie group and base space a suitable Riemannian manifold with skew-symmetric torsion. The principal bundle is equipped with a connection λ\lambda which determines the non-horizontal part of the spacetime metric and of HH. The curvature of λ\lambda takes values in an appropriate Lie algebra constructed from that of KK. In addition dHdH has only horizontal components and contains the Pontrjagin class of PP. We have computed in all cases the Killing spinor bilinears, expressed the fluxes in terms of the geometry and determine the field equations that are implied by the Killing spinor equations.Comment: 73pp. v2: minor change

    SU(3)-structures on submanifolds of a Spin(7)-manifold

    Full text link
    Local SU(3)-structures on an oriented submanifold of Spin(7)-manifold are determined and their types are characterized in terms of the shape operator and the type of the Spin(7)-structure. An application to Bryant \cite{MR89b:53084} and Calabi \cite{MR24 #A558} examples is given. It is shown that the product of a Cayley plane and a minimal surface lying in a four-dimensional orthogonal Cayley plane with the induced complex structure from the octonions described by Bryant in \cite{MR89b:53084} admits a holomorphic local complex volume form exactly when it lies in a three-plane, i.e. it coincides with the example constructed by Calabi in \cite{MR24 #A558}. In this case the holomorphic (3,0)-form is parallel with respect to the unique Hermitian connection with totally skew-symmetric torsion.Comment: 25 pages, no figures, some improvements and clarifications are made, final version to appear in Diff. Geom. App

    Maximally Minimal Preons in Four Dimensions

    Full text link
    Killing spinors of N=2, D=4 supergravity are examined using the spinorial geometry method, in which spinors are written as differential forms. By making use of methods developed in hep-th/0606049 to analyze preons in type IIB supergravity, we show that there are no simply connected solutions preserving exactly 3/4 of the supersymmetry.Comment: 18 pages. References added, comments added discussing the possibility of discrete quotients of AdS(4) preserving 3/4 supersymmetry

    Systematics of M-theory spinorial geometry

    Full text link
    We reduce the classification of all supersymmetric backgrounds in eleven dimensions to the evaluation of the supercovariant derivative and of an integrability condition, which contains the field equations, on six types of spinors. We determine the expression of the supercovariant derivative on all six types of spinors and give in each case the field equations that do not arise as the integrability conditions of Killing spinor equations. The Killing spinor equations of a background become a linear system for the fluxes, geometry and spacetime derivatives of the functions that determine the spinors. The solution of the linear system expresses the fluxes in terms of the geometry and specifies the restrictions on the geometry of spacetime for all supersymmetric backgrounds. We also show that the minimum number of field equations that is needed for a supersymmetric configuration to be a solution of eleven-dimensional supergravity can be found by solving a linear system. The linear systems of the Killing spinor equations and their integrability conditions are given in both a timelike and a null spinor basis. We illustrate the construction with examples.Comment: 46 pages. v2: systematics of a null spinor basis is included in section

    New half supersymmetric solutions of the heterotic string

    Full text link
    We describe all supersymmetric solutions of the heterotic string which preserve 8 supersymmetries and show that are distinguished by the holonomy, hol(^){\rm hol}(\hat\nabla), of the connection, ^\hat\nabla, with skew-symmetric torsion. The hol(^)SU(2){\rm hol}(\hat\nabla) \subseteq SU(2) solutions are principal bundles over a 4-dimensional hyper-K\"ahler manifold equipped with a anti-self-dual connection and fibre group GG which has Lie algebra, {\mathfrak Lie} (G)=\bR^{5,1}, \mathfrak{sl}(2,\bR)\oplus \mathfrak{su}(2) or cw6\mathfrak{cw}_6. Some of the solutions have the interpretation as 5-branes wrapped on GG with transverse space any hyper-K\"ahler 4-dimensional manifold. We construct new solutions for {\mathfrak Lie} (G)=\mathfrak{sl}(2,\bR)\oplus \mathfrak{su}(2) and show that are characterized by 3 integers and have continuous moduli. There is also a smooth family in this class with one asymptotic region and the dilaton is bounded everywhere on the spacetime. We also demonstrate that the worldvolume theory of the backgrounds with holonomy SU(2) can be understood in terms of gauged WZW models for which the gauge fields are composite. The {\rm hol}(\hat\nabla) \subseteq\bR^8 solutions are superpositions of fundamental strings and pp-waves in flat space, which may also include a null rotation. The hol(^)={1}{\rm hol}(\hat\nabla)=\{1\} heterotic string backgrounds which preserve 8 supersymmetries are Lorentzian group manifolds.Comment: 31 pages, minor corrections, analysis improved and more references adde

    The spinorial geometry of supersymmetric backgrounds

    Full text link
    We propose a new method to solve the Killing spinor equations of eleven-dimensional supergravity based on a description of spinors in terms of forms and on the Spin(1,10) gauge symmetry of the supercovariant derivative. We give the canonical form of Killing spinors for N=2 backgrounds provided that one of the spinors represents the orbit of Spin(1,10) with stability subgroup SU(5). We directly solve the Killing spinor equations of N=1 and some N=2, N=3 and N=4 backgrounds. In the N=2 case, we investigate backgrounds with SU(5) and SU(4) invariant Killing spinors and compute the associated spacetime forms. We find that N=2 backgrounds with SU(5) invariant Killing spinors admit a timelike Killing vector and that the space transverse to the orbits of this vector field is a Hermitian manifold with an SU(5)-structure. Furthermore, N=2 backgrounds with SU(4) invariant Killing spinors admit two Killing vectors, one timelike and one spacelike. The space transverse to the orbits of the former is an almost Hermitian manifold with an SU(4)-structure and the latter leaves the almost complex structure invariant. We explore the canonical form of Killing spinors for backgrounds with extended, N>2, supersymmetry. We investigate a class of N=3 and N=4 backgrounds with SU(4) invariant spinors. We find that in both cases the space transverse to a timelike vector field is a Hermitian manifold equipped with an SU(4)-structure and admits two holomorphic Killing vector fields. We also present an application to M-theory Calabi-Yau compactifications with fluxes to one-dimension.Comment: Latex, 54 pages, v2: clarifications made and references added. v3: minor changes. v4: minor change
    corecore