17,074 research outputs found
Development of flying qualities criteria for single pilot instrument flight operations
Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed
Analytic Representation of The Dirac Equation
In this paper we construct an analytical separation (diagonalization) of the
full (minimal coupling) Dirac equation into particle and antiparticle
components. The diagonalization is analytic in that it is achieved without
transforming the wave functions, as is done by the Foldy-Wouthuysen method, and
reveals the nonlocal time behavior of the particle-antiparticle relationship.
We interpret the zitterbewegung and the result that a velocity measurement (of
a Dirac particle) at any instant in time is, as reflections of the fact that
the Dirac equation makes a spatially extended particle appear as a point in the
present by forcing it to oscillate between the past and future at speed c. From
this we infer that, although the form of the Dirac equation serves to make
space and time appear on an equal footing mathematically, it is clear that they
are still not on an equal footing from a physical point of view. On the other
hand, the Foldy-Wouthuysen transformation, which connects the Dirac and square
root operator, is unitary. Reflection on these results suggests that a more
refined notion (than that of unitary equivalence) may be required for physical
systems
Development of long-life, low-noise linear bearings for atmospheric interferometry
This paper describes the development of dry-lubricated linear bearings for use on the Michelson interferometer for passive atmospheric sounding (MIPAS). Two candidate bearing systems were developed and tested. In the first, use was made of linear roller (needle) bearings equipped with a pulley-and-cable arrangement to prevent cage drift and to minimize roller slip. The second design was of a roller-guided bearing system in which guidance was provided by all bearings rolling along guide rods. The paper focuses on the development of these linear bearings systems and describes the approach taken in terms of bearing design, lubrication methods, screening programs, and thermal-vacuum testing. Development difficulties are highlighted and the solutions ultimately adopted are described
Preliminary design study of a baseline MIUS
Results of a conceptual design study to establish a baseline design for a modular integrated utility system (MIUS) are presented. The system concept developed a basis for evaluating possible projects to demonstrate an MIUS. For the baseline study, climate conditions for the Washington, D.C., area were used. The baseline design is for a high density apartment complex of 496 dwelling units with a planned full occupancy of approximately 1200 residents. Environmental considerations and regulations for the MIUS installation are discussed. Detailed cost data for the baseline MIUS are given together with those for design and operating variations under climate conditions typified by Las Vegas, Nevada, Houston, Texas, and Minneapolis, Minnesota. In addition, results of an investigation of size variation effects, for 300 and 1000 unit apartment complexes, are presented. Only conceptual aspects of the design are discussed. Results regarding energy savings and costs are intended only as trend information and for use in relative comparisons. Alternate heating, ventilation, and air conditioning concepts are considered in the appendix
All-Sky Search for Long-Duration Gravitational Wave Transients in the First Advanced LIGO Observing Run
We present the results of a search for long-duration gravitational wave transients in the data of the LIGO Hanford and LIGO Livingston second generation detectors between and , with a total observational time of . The search targets gravitational wave transients of 10–500 s duration in a frequency band of 24–2048 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. No significant events were observed. As a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also show that the search is sensitive to sources in the Galaxy emitting at least  ~10−8 in gravitational waves
Search for Gravitational Waves Associated with Gamma-Ray Bursts During the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B
We present the results of the search for gravitational waves (GWs) associated with γ-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 γ-ray bursts for which LIGO data are available with sufficient duration. For all γ-ray bursts, we place lower bounds on the distance to the source using the optimistic assumption that GWs with an energy of were emitted within the – Hz band, and we find a median 90% confidence limit of 71 Mpc at 150 Hz. For the subset of 19 short/hard γ-ray bursts, we place lower bounds on distance with a median 90% confidence limit of 90 Mpc for binary neutron star (BNS) coalescences, and 150 and 139 Mpc for neutron star–black hole coalescences with spins aligned to the orbital angular momentum and in a generic configuration, respectively. These are the highest distance limits ever achieved by GW searches. We also discuss in detail the results of the search for GWs associated with GRB 150906B, an event that was localized by the InterPlanetary Network near the local galaxy NGC 3313, which is at a luminosity distance of Mpc (z = 0.0124). Assuming the γ-ray emission is beamed with a jet half-opening angle , we exclude a BNS and a neutron star–black hole in NGC 3313 as the progenitor of this event with confidence \u3e99%. Further, we exclude such progenitors up to a distance of 102 Mpc and 170 Mpc, respectively
Quench Induced Vortices in the Symmetry Broken Phase of Liquid He
Motivated by the study of cosmological phase transitions, our understanding
of the formation of topological defects during spontaneous symmetry-breaking
and the associated non-equilibrium field theory has recently changed.
Experiments have been performed in superfluid He to test the new ideas
involved. In particular, it has been observed that a vortex density is seen
immediately after pressure quenches from just below the transition.
We discuss possible interpretations of these vortices, conclude they are
consistent with our ideas of vortex formation and propose a modification of the
original experiments.Comment: 29 pages, RevTeX with one EPS figur
- …