2,588 research outputs found

    Assessing the variation in the load that produces maximal upper-body power

    Get PDF
    Substantial variation in the load that produces maximal power has been reported. It has been suggested that the variation observed may be due to differences in subject physical characteristics. Therefore the aim of this study was to determine the extent in which anthropometric measures correlate to the load that produces maximal power. Anthropometric measures (upper-arm length, forearm length, total arm length, upper-arm girth) and bench press strength were assessed in 26 professional rugby union players. Peak power was then determined in the bench press throw exercise using loads of 20 to 60% of one repetition maximum (1RM) in the bench press exercise. Maximal power occurred at 30 +/- 14 %1RM (mean +/- SD). Upper-arm length had the highest correlation with the load maximizing power: -0.61 (90% confidence limits -0.35 to -0.78), implying loads of 22 vs. 38 %1RM maximize power for players with typically long vs. short upper-arm length. Correlations for forearm length, total arm length and upper-arm girth to the load that maximized power were -0.29 (0.04 to -0.57), -0.56 (-0.28 to -0.75), and -0.29 (0.04 to -0.57), respectively. The relationship between 1RM and the load that produced maximal power was r = -0.23 (0.10 to -0.52). The between-subject variation in the load that maximised power observed (SD= +/- 14 %1RM) may have been due to differences in anthropometric characteristics, and absolute strength and power outputs. Indeed, athletes with longer limbs and larger girths, and greater maximal strength and power outputs utilised a lower percentage of 1RM loads to achieve maximum power. Therefore, we recommend individual assessment of the load that maximizes power output

    Assessing lower-body peak power in elite rugby-union players

    Get PDF

    Modelling the hepatitis B vaccination programme in prisons

    Get PDF
    A vaccination programme offering hepatitis B (HBV) vaccine at reception into prison has been introduced into selected prisons in England and Wales. Over the coming years it is anticipated this vaccination programme will be extended. A model has been developed to assess the potential impact of the programme on the vaccination coverage of prisoners, ex-prisoners, and injecting drug users (IDUs). Under a range of coverage scenarios, the model predicts the change over time in the vaccination status of new entrants to prison, current prisoners and IDUs in the community. The model predicts that at baseline in 2012 57% of the IDU population will be vaccinated with up to 72% being vaccinated depending on the vaccination scenario implemented. These results are sensitive to the size of the IDU population in England and Wales and the average time served by an IDU during each prison visit. IDUs that do not receive HBV vaccine in the community are at increased risk from HBV infection. The HBV vaccination programme in prisons is an effective way of vaccinating this hard-to-reach population although vaccination coverage on prison reception must be increased to achieve this

    Reliability of Repeated Nordic Hamstring Strength in Rugby Players Using a Load Cell Device.

    Get PDF
    Hamstring strain injuries are one of the most common injuries in Rugby Union players, representing up to 15% of all sustained injuries. The Nordic eccentric hamstring test assesses the maximal hamstring eccentric strength and imbalances between limbs. Asymmetries and deficits in hamstring strength between legs are commonly assessed and used as screening methods to prevent injuries which can only be proven effective if hamstring strength measures are reliable over time. We conducted a repeated-measures reliability study with 25 male Rugby Union players. Nordic eccentric strength and bilateral strength balance was assessed. Three testing sessions were undertaken over three consecutive weeks. Intrasession and intersession reliabilities were assessed using typical errors (TE), coefficient of variations (CV), and intraclass correlation coefficients (ICC). Our results showed good intrasession reliability (ICC = 0.79-0.90, TE = 26.8 N to 28.9 N, CV = 5.5% to 6.7%), whilst intersession reliability was fair for mean and the max (ICC = 0.52-0.64, TE = 44.1 N to 55.9 N, CV from 7.4% to 12.5%). Regarding the bilateral strength balance ratios, our results showed good intrasession reliability (ICC = 0.62-0.89, TE = 0.5, CV = 4.4% to 7.2%), whilst the intersession reliability for mean and max values was fair (ICC = 0.52-0.54) with a good absolute intersession reliability CV ranging from 8.2% to 9.6%. Assessing the Nordic eccentric hamstring strength and the bilateral strength balance in Rugby players using a load cell device is a feasible method to test, and demonstrated good intrasession and fair intersession reliability. Nordic eccentric strength assessment is a more practical and functional test than isokinetic; we provide data from Rugby Union players to inform clinicians, and to establish normative values in this cohort

    Effects of diabetes family history and exercise training on the expression of adiponectin and leptin and their receptors

    Get PDF
    The daughters of patients with diabetes have reduced insulin sensitivity index (ISI) scores compared with women with no family history of diabetes, but their ISI increase more in response to exercise training(1). The present study aimed to determine whether differences between these groups in exercise-induced changes in circulating adiponectin and leptin concentrations and expression of their genes and receptors in subcutaneous adipose tissue (SAT), could explain differences in the exercise-induced changes in ISI between women with and without a family history of diabetes

    Automatic-Scoring Actigraph Compares Favourably to a Manually-Scored Actigraph for Sleep Measurement in Healthy Adults.

    Get PDF
    Introduction  Actigraphy has been used widely in sleep research due to its non-invasive, cost-effective ability to monitor sleep. Traditionally, manually-scored actigraphy has been deemed the most appropriate in the research setting; however, technological advances have seen the emergence of automatic-scoring wearable devices and software. Methods  A total of 60-nights of sleep data from 20-healthy adult participants (10 male, 10 female, age: 26 ± 10 years) were collected while wearing two devices concomitantly. The objective was to compare an automatic-scoring device (Fatigue Science Readiband™ [AUTO]) and a manually-scored device (Micro Motionlogger® [MAN]) based on the Cole-Kripke method. Manual-scoring involved trained technicians scoring all 60-nights of sleep data. Sleep indices including total sleep time (TST), total time in bed (TIB), sleep onset latency (SOL), sleep efficiency (SE), wake after sleep onset (WASO), wake episodes per night (WE), sleep onset time (SOT) and wake time (WT) were assessed between the two devices using mean differences, 95% levels of agreement, Pearson-correlation coefficients ( r ), and typical error of measurement (TEM) analysis. Results  There were no significant differences between devices for any of the measured sleep variables ( p  ≥0.05). All sleep indices resulted in very-strong correlations ( all r  ≥0.84) between devices. A mean difference between devices of <1 minutes for TST was associated with a TEM of 15.5 minute (95% CI =12.3 to 17.7 minutes). Conclusion  Given there were no significant differences between devices in the current study, automatic-scoring actigraphy devices may provide a more practical and cost-effective alternative to manually-scored actigraphy in healthy populations

    Operative and Radiographic Acetabular Component Orientation in Total Hip Replacement: Influence of Pelvic Orientation and Surgical Positioning Technique

    Get PDF
    Orthopaedic surgeons often experience a mismatch between perceived intra-operative and radiographic acetabular cup orientation. This research aimed to assess the impact of pelvic orientation and surgical positioning technique on operative and radiographic cup orientation. Radiographic orientations for two surgical approaches were computationally simulated: a mechanical alignment guide and a transverse acetabular ligament approach, both in combination with different pelvic orientations. Positional errors were defined as the difference between the target radiographic orientation and that achieved. The transverse acetabular ligament method demonstrated smaller positional errors for radiographic version; 4.0° ± 2.9° as compared to 9.4° ± 7.3° for the mechanical alignment guide method. However, both methods resulted in similar errors in radiographic inclination. Multiple regression analysis showed that intraoperative pelvic rotation about the anterior-posterior axis was a strong predictor for these errors (B TAL = −0.893, B MAG = −0.951, p &lt; 0.01). Application of the transverse acetabular ligament method can reduce errors in radiographic version. However, if the orthopaedic surgeon is referencing off the theatre floor to control inclination when operating in lateral decubitus, this is only reliable if the pelvic sagittal plane is horizontal. There is currently no readily available method for ensuring that this is the case during total hip replacement surgery. </p
    corecore