28,545 research outputs found
Comment on "Exclusion of time in the theorem of Bell" by K. Hess and W. Philipp
A recent Letter by Hess and Philipp claims that Bell's theorem neglects the
possibility of time-like dependence in local hidden variables, hence is not
conclusive. Moreover the authors claim that they have constructed, in an
earlier paper, a local realistic model of the EPR correlations. However, they
themselves have neglected the experimenter's freedom to choose settings, while
on the other hand, Bell's theorem can be formulated to cope with time-like
dependence. This in itself proves that their toy model cannot satisfy local
realism, but we also indicate where their proof of its local realistic nature
fails.Comment: Latex needs epl.cl
Two electrons on a hypersphere: a quasi-exactly solvable model
We show that the exact wave function for two electrons, interacting through a
Coulomb potential but constrained to remain on the surface of a
-sphere (), is a polynomial in the
interelectronic distance for a countably infinite set of values of the
radius . A selection of these radii, and the associated energies, are
reported for ground and excited states on the singlet and triplet manifolds. We
conclude that the model bears the greatest similarity to normal
physical systems.Comment: 4 pages, 0 figur
Triple cascade behaviour in QG and drift turbulence and generation of zonal jets
We study quasigeostrophic (QG) and plasma drift turbulence within the Charney-Hasegawa-Mima (CHM) model. We focus on the zonostrophy, an extra invariant in the CHM model, and on its role in the formation of zonal jets. We use a generalized Fjørtoft argument for the energy, enstrophy, and zonostrophy and show that they cascade anisotropically into nonintersecting sectors in k space with the energy cascading towards large zonal scales. Using direct numerical simulations of the CHM equation, we show that zonostrophy is well conserved, and the three invariants cascade as predicted by the Fjørtoft argument
Development of flying qualities criteria for single pilot instrument flight operations
Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed
Approximate theoretical performance evaluation for a diverging rocket
A simplified combustion model, which is motivated by available performance studies on the diverging rocket reactor, has been used as basis for an engine performance
evaluation. Comparison with conventional rocket configurations shows that an upper performance limit for the diverging reactor is comparable with performance
estimates for engines using an adiabatic work cycle. Development of the diverging reactor for engine applications may, however, offer some advantages for very hot, high-energy, propellant systems
Why is timing of bird migration advancing when individuals are not?
Recent advances in spring arrival dates have been reported in many migratory species but the mechanism driving these advances is unknown. As population declines are most widely reported in species that are not advancing migration, there is an urgent need to identify the mechanisms facilitating and constraining these advances. Individual plasticity in timing of migration in response to changing climatic conditions is commonly proposed to drive these advances but plasticity in individual migratory timings is rarely observed. For a shorebird population that has significantly advanced migration in recent decades, we show that individual arrival dates are highly consistent between years, but that the arrival dates of new recruits to the population are significantly earlier now than in previous years. Several mechanisms could drive advances in recruit arrival, none of which require individual plasticity or rapid evolution of migration timings. In particular, advances in nest-laying dates could result in advanced recruit arrival, if benefits of early hatching facilitate early subsequent spring migration. This mechanism could also explain why arrival dates of short-distance migrants, which generally return to breeding sites earlier and have greater scope for advance laying, are advancing more rapidly than long-distance migrants
Deterministic entanglement of two neutral atoms via Rydberg blockade
We demonstrate the first deterministic entanglement of two individually
addressed neutral atoms using a Rydberg blockade mediated controlled-NOT gate.
Parity oscillation measurements reveal an entanglement fidelity of
, which is above the entanglement threshold of , without
any correction for atom loss, and after correcting for
background collisional losses. The fidelity results are shown to be in good
agreement with a detailed error model.Comment: 4 figure
Within-guild dietary discrimination from 3-D textural analysis of tooth microwear in insectivorous mammals
Resource exploitation and competition for food are important selective pressures in animal evolution. A number of recent investigations have focused on linkages between diversification, trophic morphology and diet in bats, partly because their roosting habits mean that for many bat species diet can be quantified relatively easily through faecal analysis. Dietary analysis in mammals is otherwise invasive, complicated, time consuming and expensive. Here we present evidence from insectivorous bats that analysis of three-dimensional (3-D) textures of tooth microwear using International Organization for Standardization (ISO) roughness parameters derived from sub-micron surface data provides an additional, powerful tool for investigation of trophic resource exploitation in mammals. Our approach, like scale-sensitive fractal analysis, offers considerable advantages over twodimensional (2-D) methods of microwear analysis, including improvements in robustness, repeatability and comparability of studies. Our results constitute the first analysis of microwear textures in carnivorous mammals based on ISO roughness parameters. They demonstrate that the method is capable of dietary discrimination, even between cryptic species with subtly different diets within trophic guilds, and even when sample sizes are small. We find significant differences in microwear textures between insectivore species whose diet contains different proportions of ‘hard’ prey (such as beetles) and ‘soft’ prey (such as moths), and multivariate analyses are able to distinguish between species with different diets based solely on their tooth microwear textures. Our results show that, compared with previous 2-D analyses of microwear in bats, ISO roughness parameters provide a much more sophisticated characterization of the nature of microwear surfaces and can yield more robust and subtle dietary discrimination. ISO-based textural analysis of tooth microwear thus has a useful role to play, complementing existing approaches, in trophic analysis of mammals, both extant and extinct
DevOps: Concepts, Practices, Tools, Benefits and Challenges
DevOps, originated in the context of agile software development, seems an appropriate approach to enable the continuous delivery and deployment of working software in small releases. Organizations are taking significant interest in adopting DevOps ways of working. The interest is there, however the challenge is how to effectively adopt DevOps in practice? Before disembarking on the journey of DevOps, there is a need to clearly understand the DevOps concepts, practice, tools, benefits and underlying challenges. Thus, in order to address the research question in hand, this paper adopts a Systematic Literature Review (SLR) approach to identify, review and synthesize the relevant studies published in public domain between: 2010-2016. SLR approach was applied to initially identify a set of 450 papers. Finally, 30 of 450 relevant papers were selected and reviewed to identify the eight key DevOps concepts, twenty practices, and a twelve categories tools. The research also identified seventeen benefits of using DevOps approach for application development and encountered four known challenges. The results of this review will serve as a knowledge base for researchers and practitioners, which can be used to effectively understand and establish the integrated DevOps capability in the local context
Domains of invasion organelle proteins from apicomplexan parasites are homologous with the Apple domains of blood coagulation factor XI and plasma pre-kallikrein and are members of the PAN module superfamily
AbstractMicronemes are specialised organelles, found in all apicomplexan parasites, which secrete molecules that are essential for parasite attachment to and invasion of host cells. Regions of several microneme proteins have sequence similarity to the Apple domains (A-domains) of blood coagulation factor XI (FXI) and plasma pre-kallikrein (PK). We have used mass spectrometry on a recombinant-expressed, putative A-domain from the microneme protein EtMIC5 from Eimeria tenella, to demonstrate that three intramolecular disulphide bridges are formed. These bridges are analogous to those that stabilise A-domains in FXI and PK. The data confirm that the apicomplexan domains are structural homologues of A-domains and are therefore novel members of the PAN module superfamily, which also includes the N-terminal domains of members of the plasminogen/hepatocyte growth factor family. The role of A-domains/PAN modules in apicomplexan parasites is not known, but their presence in the microneme suggests that they may be important for mediating protein–protein or protein–carbohydrate interactions during parasite attachment and host cell invasion
- …