275 research outputs found

    Towards a sounder fire ecology

    Get PDF
    This forum brings together fire ecologists from outside the current wildfire controversy in the US to give their views on three central topics related to ecosystems in which wildfires are an important process. First, how do fire behavior and ecological effects vary between ecosystems? Second, why does this variation require an understanding that goes beyond simple correlations between various fire and ecosystem variables to more careful causal models? Third, how can human values and goals be reconciled with fire disturbance processes in an ecologically sound manner

    Individual repeatability of avian migration phenology: a systematic review and meta-analysis

    Get PDF
    Changes in phenology and distribution are being widely reported for many migratory species in response to shifting environmental conditions. Understanding these changes and the situations in which they occur can be aided by understanding consistent individual differences in phenology and distribution and the situations in which consistency varies in strength or detectability. Studies tracking the same individuals over consecutive years are increasingly reporting migratory timings to be a repeatable trait, suggesting that flexible individual responses to environmental conditions may contribute little to population-level changes in phenology and distribution. However, how this varies across species and sexes, across the annual cycle and in relation to study (tracking method, study design) and/or ecosystem characteristics is not yet clear. Here, we take advantage of the growing number of publications in movement ecology to perform a phylogenetic multilevel meta-analysis of repeatability estimates for avian migratory timings to investigate these questions. Of 2,433 reviewed studies, 54 contained suitable information for meta-analysis, resulting in 177 effect sizes from 47 species. Individual repeatability of avian migratory timings averaged 0.414 (95% confidence interval: 0.3-0.5) across landbirds, waterbirds and seabirds, suggesting consistent individual differences in migratory timings is a common feature of migratory systems. Timing of departure from the non-breeding grounds was more repeatable than timings of arrival at or departure from breeding grounds, suggesting that conditions encountered on migratory journeys and outcome of breeding attempts can influence individual variation. Population-level shifts in phenology could arise through individual timings changing with environmental conditions and/or through shifts in the numbers of individuals with different timings. Our findings suggest that, in addition to identifying the conditions associated with individual variation in phenology, exploring the causes of between-individual variation will be key in predicting future rates and directions of changes in migratory timings. We therefore encourage researchers to report the within- and between- individual variance components underpinning the reported repeatability estimates to aid interpretation of migration behaviour. In addition, the lack of studies in the tropics means that levels of repeatability in less strongly seasonal environments are not yet clear

    Individual repeatability of avian migration phenology: A systematic review and meta-analysis

    Get PDF
    1. Changes in phenology and distribution are being widely reported for many migratory species in response to shifting environmental conditions. Understanding these changes and the situations in which they occur can be aided by understanding consistent individual differences in phenology and distribution and the situations in which consistency varies in strength or detectability. 2. Studies tracking the same individuals over consecutive years are increasingly reporting migratory timings to be a repeatable trait, suggesting that flexible individual responses to environmental conditions may contribute little to population-level changes in phenology and distribution. However, how this varies across species and sexes, across the annual cycle and in relation to study (tracking method, study design) and/or ecosystem characteristics is not yet clear. 3. Here, we take advantage of the growing number of publications in movement ecology to perform a phylogenetic multilevel meta-analysis of repeatability estimates for avian migratory timings to investigate these questions. Of 2,433 reviewed studies, 54 contained suitable information for meta-analysis, resulting in 177 effect sizes from 47 species. 4. Individual repeatability of avian migratory timings averaged 0.414 (95% confidence interval: 0.3ā€“0.5) across landbirds, waterbirds and seabirds, suggesting consistent individual differences in migratory timings is a common feature of migratory systems. Timing of departure from the non-breeding grounds was more repeatable than timings of arrival at or departure from breeding grounds, suggesting that conditions encountered on migratory journeys and outcome of breeding attempts can influence individual variation. 5. Population-level shifts in phenology could arise through individual timings changing with environmental conditions and/or through shifts in the numbers of individuals with different timings. Our findings suggest that, in addition to identifying the conditions associated with individual variation in phenology, exploring the causes of between-individual variation will be key in predicting future rates and directions of changes in migratory timings. We therefore encourage researchers to report the within- and between- individual variance components underpinning the reported repeatability estimates to aid interpretation of migration behaviour. In addition, the lack of studies in the tropics means that levels of repeatability in less strongly seasonal environments are not yet clear

    Individual consistency in migration strategies of a tropical seabird, the Round Island petrel

    Get PDF
    Background: In migratory species, the extent of within- and between-individual variation in migratory strategies can influence potential rates and directions of responses to environmental changes. Quantifying this variation requires tracking of many individuals on repeated migratory journeys. At temperate and higher latitudes, low levels of within-individual variation in migratory behaviours are common and may reflect repeated use of predictable resources in these seasonally-structured environments. However, variation in migratory behaviours in the tropics, where seasonal predictability of food resources can be weaker, remains largely unknown. Methods: Round Island petrels (Pterodroma sp.) are tropical, pelagic seabirds that breed all year round and perform long-distance migrations. Using multi-year geolocator tracking data from 62 individuals between 2009 and 2018, we quantify levels of within- and between-individual variation in non-breeding distributions and timings. Results: We found striking levels of between-individual variation in at-sea movements and timings, with non-breeding migrations to different areas occurring across much of the Indian Ocean and throughout the whole year. Despite this, repeat-tracking of individual petrels revealed remarkably high levels of spatial and temporal consistency in within-individual migratory behaviour, particularly for petrels that departed at similar times in different years and for those departing in the austral summer. However, while the same areas were used by individuals in different years, they were not necessarily used at the same times during the non-breeding period. Conclusions: Even in tropical systems with huge ranges of migratory routes and timings, our results suggest benefits of consistency in individual migratory behaviours. Identifying the factors that drive and maintain between-individual variation in migratory behaviour, and the consequences for breeding success and survival, will be key to understanding the consequences of environmental change across migratory ranges

    Fire regimes and carbon in Australian vegetation

    Get PDF
    Fires regularly affect many of the world\u27s terrestrial ecosystems, and, as a result, fires mediate the exchange of greenhouse gases (GHG) between the land and the atmosphere at a global scale and affect the capacity of terrestrial ecosystems to store carbon (Bowman et al. 2009). Variations in fire -regimes can therefore potentially affect the global, regional and local carbon balance and, potentially, climate change itself (Bonan 2008). Here we examine how variation in fire regimes (Gill 1975; Bradstock et al. 2002) will potentially affect carbon in fire-prone Australian ecosystems via interactions with the stocks and transfers of carbon that are inherent to all terrestrial ecosystems. There are two key reasons why an appreciation of fire regimes is needed to comprehend the fate of terrestrial carbon. First, the status of terrestrial carbon over time will be a function of the balance between losses (emissions) from individual fires (of differing type, season and intensity), which occur as a result of immediate combustion as well as mortality and longerterm decomposition of dead biomass, and carbon that accumulates during regeneration in the intervals between fires. The length of the interval between fires will determine the amount of biomass that accumulates. Second, fire regimes influence the composition and structure of ecosystems and key processes such as plant mortality and recruitment. Hence, alternative trajectories of vegetation composition and structure that result from differing fire regimes will affect carbon dynamics. We explore these themes and summarise the dynamic aspects of carbon stocks and transfers in relation to fire, present conceptual models of carbon dynamics and fire regimes, and review how variation in fire regimes may affect overall storage potential as a function of fireinduced losses and post-fire uptake in two widespread Australian vegetation types. We then appraise future trends under global change and the likely potential for managing fire regimes for carbon \u27benefits\u27, especially with respect to emissions

    What do older people do when sitting and why? Implications for decreasing sedentary behaviour

    Get PDF
    Background and Objectives: Sitting less can reduce older adultsā€™ risk of ill health and disability. Effective sedentary behavior interventions require greater understanding of what older adults do when sitting (and not sitting), and why. This study compares the types, context, and role of sitting activities in the daily lives of older men and women who sit more or less than average. Research Design and Methods: Semistructured interviews with 44 older men and women of different ages, socioeconomic status, and objectively measured sedentary behavior were analyzed using social practice theory to explore the multifactorial, inter-relational influences on their sedentary behavior. Thematic frameworks facilitated between-group comparisons. Results: Older adults described many different leisure time, household, transport, and occupational sitting and non-sitting activities. Leisure-time sitting in the home (e.g., watching TV) was most common, but many non-sitting activities, including ā€œpotteringā€ doing household chores, also took place at home. Other people and access to leisure facilities were associated with lower sedentary behavior. The distinction between being busy/not busy was more important to most participants than sitting/not sitting, and informed their judgments about high-value ā€œpurposefulā€ (social, cognitively active, restorative) sitting and low-value ā€œpassiveā€ sitting. Declining physical function contributed to temporal sitting patterns that did not vary much from day-to-day. Discussion and Implications: Sitting is associated with cognitive, social, and/or restorative benefits, embedded within older adultsā€™ daily routines, and therefore difficult to change. Useful strategies include supporting older adults to engage with other people and local facilities outside the home, and break up periods of passive sitting at home

    Impact of source data on the interpretation of contrast-enhanced magnetic resonance angiography of the lower limbs

    Get PDF
    Background The primary purpose of this study is to examine whether use of source data is effective in increasing the number of arterial segments that can be interpreted from maximum intensity projections of lower limb MR angiograms. Correlation between sites of arterial disease and venous contamination was also measured. Interpretation of source data is performed routinely by radiologists, but the value of this has not been well studied with randomized studies. Results The proportion of segments visible above the knee was 87% using maximal intensity projection alone (MIP) and 88% when the MIP was combined with source data. The proportions were 67% for MIP and 72% for MIP plus source data below the knee. There was substantial agreement between presence of arterial disease and venous contamination in the calf and thigh. Conclusion The use of source data increases the number of assessable segments, but not individuals, by a statistically significant but small amount (1.2%, p <0.05). This study supports the association between arterial disease and venous contamination
    • ā€¦
    corecore