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Abstract
1.	 Changes in phenology and distribution are being widely reported for many mi-

gratory species in response to shifting environmental conditions. Understanding 
these changes and the situations in which they occur can be aided by under-
standing consistent individual differences in phenology and distribution and the 
situations in which consistency varies in strength or detectability.

2.	 Studies tracking the same individuals over consecutive years are increasingly 
reporting migratory timings to be a repeatable trait, suggesting that flex-
ible individual responses to environmental conditions may contribute little to 
population-level changes in phenology and distribution. However, how this var-
ies across species and sexes, across the annual cycle and in relation to study 
(tracking method, study design) and/or ecosystem characteristics is not yet 
clear.

3.	 Here, we take advantage of the growing number of publications in movement 
ecology to perform a phylogenetic multilevel meta-analysis of repeatability es-
timates for avian migratory timings to investigate these questions. Of 2,433 re-
viewed studies, 54 contained suitable information for meta-analysis, resulting in 
177 effect sizes from 47 species.

4.	 Individual repeatability of avian migratory timings averaged 0.414 (95% confi-
dence interval: 0.3–0.5) across landbirds, waterbirds and seabirds, suggesting 
consistent individual differences in migratory timings is a common feature of 
migratory systems. Timing of departure from the non-breeding grounds was 
more repeatable than timings of arrival at or departure from breeding grounds, 
suggesting that conditions encountered on migratory journeys and outcome of 
breeding attempts can influence individual variation.

5.	 Population-level shifts in phenology could arise through individual timings 
changing with environmental conditions and/or through shifts in the numbers 
of individuals with different timings. Our findings suggest that, in addition to 
identifying the conditions associated with individual variation in phenology, 
exploring the causes of between-individual variation will be key in predicting 

www.wileyonlinelibrary.com/journal/jane
mailto:﻿
https://orcid.org/0000-0001-5004-9740
https://orcid.org/0000-0001-6212-4787
https://orcid.org/0000-0002-5111-5639
https://orcid.org/0000-0002-3375-2431
https://orcid.org/0000-0002-7765-5182
mailto:kirsty.franklin@uea.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1365-2656.13697&domain=pdf&date_stamp=2022-04-18


2  |   Journal of Animal Ecology FRANKLIN et al.

1  |  INTRODUC TION

Rapid environmental change is having profound impacts on the dis-
tribution, abundance, behaviour and interactions of species (Walther 
et al., 2002). For migratory species, identifying and ultimately tack-
ling the problems caused by environmental change are particularly 
difficult because of the range of sites and conditions experienced 
by individuals across the annual cycle (Alves et al.,  2013; Gilroy 
et al., 2016; Knudsen et al., 2011). Therefore, changes in conditions 
across all or part of migratory ranges could have strong implications 
in terms of survival rates and population dynamics at local and global 
scales (Newton, 2004), raising concerns regarding the effectiveness 
of existing protected area networks (Hanson et al., 2020; Méndez 
et al., 2017). The complexity and unpredictability of how migratory 
systems respond to environmental change represents a major chal-
lenge for conservation planners.

Changes in migratory behaviour in response to climate change 
have been documented in many species (Ambrosini et al.,  2019). 
The most frequent responses are shifts in phenology in parallel with 
climate warming, for example migrant arrival dates at the breeding 
grounds in spring are getting earlier in many species (Gordo, 2007; 
Gunnarsson & Tómasson,  2011; Lawrence et al.,  2022). In some 
species, shifts in migratory routes and wintering destinations (Dias 
et al., 2011; Sutherland, 1998) or reduced propensity for migration 
have been recorded, such that part or all of a population has become 
resident (Chapman et al., 2011; van Vliet et al., 2009). Migratory spe-
cies currently showing little or no phenological change are more likely 
to be those experiencing population declines (Gilroy et al.,  2016; 
Møller et al., 2008; Newton, 2008), possibly arising from a reduc-
tion in synchrony with the phenology of prey abundance (known as 
trophic mismatch; Thackery et al., 2010). Therefore, identifying the 
mechanisms through which shifts in migratory routes and/or timings 
occur may be key to mitigating the effects of rapid environmental 
change on declining migratory species (Gill et al.,  2019; Knudsen 
et al., 2011).

In migratory systems, there are two processes that could lead 
to shifts in migration routes and/or timings: (a) behavioural flexibil-
ity, whereby individuals adjust their migratory behaviour according 
to the environmental conditions they experience (Charmantier & 
Gienapp,  2014) and (b) generational change, whereby the propor-
tion of new recruits using particular locations or schedules differs 

from previous generations, as a result of changes in the conditions 
influencing those behaviours and/or the associated survival rates 
(Gill et al., 2014; Gill et al., 2019; Verhoeven et al., 2018). The rate 
and direction of shifts in migratory routes and/or timings could vary 
greatly with each mechanism, with behavioural flexibility facilitat-
ing relatively rapid and, potentially, directional change. By contrast, 
generational change would likely result in slower changes, especially 
for long-lived species, as the direction and magnitude of change de-
pends on the number of annual recruits in a population, the pro-
portion of those experiencing different conditions that influence 
individual routes and phenologies, and their subsequent survival 
rates (Gill et al., 2019).

A key first step towards assessing the likelihood of migratory 
routes and timings altering in response to environmental changes is 
therefore quantifying when individuals show consistent differences 
in these behaviours. This requires repeated measurements from in-
dividuals across years to assess the amount of variation in behaviour 
attributable to differences among individuals. In animal movement 
studies, this individual-based approach has become increasingly 
possible due to recent advances in remote-tracking technology 
(Geen et al.,  2019; López-López,  2016), primarily satellite teleme-
try and more recently through light-level geolocators (GLS). Before 
this, most studies of migratory behaviour have been conducted by 
means of visual observations or, more specifically for birds, through 
ringing studies (e.g. Møller, 2001; Potti, 1998; Rees, 1989). Repeated 
tracking of multiple individuals over multiple years can allow esti-
mation of the variation in migratory behaviours that is explained by 
between-individual variation relative to both between- and within-
individual variation (and measurement error; termed ‘repeatabil-
ity’ (R) or the ‘intra-class correlation coefficient’ (ICC; Nakagawa & 
Schielzeth, 2010)). High repeatability estimates could indicate a con-
sistent behaviour within individuals relative to high variation between 
individuals (Lessells & Boag,  1987; Nakagawa & Schielzeth,  2010; 
but see Cleasby et al., 2015; Sánchez-Tójar et al., 2022). For exam-
ple, changes in phenology have long been assumed to be caused by 
within-individual effects, but between-individual effects could also 
contribute to changes, making it key that we understand the contri-
butions of within- and between-individual variation to repeatability 
estimates and interpretation.

Repeatability in migratory behaviour has been explored across 
taxa, including amphibians (Semlitsch et al.,  1993), insects (Kent 

future rates and directions of changes in migratory timings. We therefore en-
courage researchers to report the within- and between- individual variance 
components underpinning the reported repeatability estimates to aid inter-
pretation of migration behaviour. In addition, the lack of studies in the tropics 
means that levels of repeatability in less strongly seasonal environments are not 
yet clear.
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& Rankin,  2001), fishes (Brodersen et al.,  2014; Thorsteinsson 
et al., 2012; Villegas-Ríos et al., 2017), bats (Lehnert et al., 2018), 
ungulates (Laforge et al., 2021), sea turtles (Schofield et al., 2010) 
and birds (see Table  S1). Previous meta-analyses of behavioural 
repeatability have extracted repeatability estimates for migratory 
behaviours (Bell et al., 2009; Holtmann et al., 2017) but many pos-
sible sources of variation in levels of repeatability have not yet 
been explored. For example, in addition to variation as a result of 
different sampling designs and/or between sexes (Bell et al., 2009; 
Holtmann et al.,  2017), repeatability may vary with tracking 
method, species and/or among different stages of the annual 
cycle. Differences in sampling strategies (e.g. number of individ-
uals tracked, number of observations per individual) can influence 
estimates of repeatability (Dingemanse & Dochtermann,  2013; 
Wolak et al., 2012). An increase in both individual- and population-
level variation in migratory behaviours might be expected if in-
dividuals are tracked for longer (e.g. Berthold et al., 2004; Catry 
et al., 1999), and variability may be underestimated if sample sizes 
are small, as estimates will be less likely to capture the total popu-
lation variation (Conklin et al., 2013).

Repeatability may also be affected by the methods used to track 
individuals. The earliest estimates of repeatability in avian migra-
tion used conventional ringing methods such as ring recaptures, 
and colour-ring re-sightings, which have the advantages that they 
last for most or all of marked individuals' lifetime, and are much 
cheaper, allowing samples of hundreds and even thousands of in-
dividuals. These Eulerian sampling methods (i.e. fixed in space) rely 
on re-capturing the marked birds (and recovery rates are generally 
low) or depend highly on the spatiotemporal distribution of observ-
ers. Detection of individuals with this method may be incomplete, 
which may introduce variable lags in observation of the timing of 
migratory arrivals and/or departures. Lagrangian tracking of indi-
viduals through time and space (i.e. animal-borne tracking devices) 
may therefore be more suited to studies of the timing of individ-
ual movements (Phillips et al., 2019). For example, the accuracy of 
estimates of timing of arrival at the breeding grounds as observed 
through conventional studies may be low in comparison to more 
recent methods, such as satellite telemetry, GPS and GLS (Korner-
Nievergelt et al., 2012). The general trade-offs between these meth-
ods therefore include temporal and spatial resolution, life span and 
the mass and cost of each unit (Wakefield et al., 2009). Satellite and 
GPS loggers have good temporal (e.g. on a minute or hourly basis) 
and spatial accuracy (within ~150 m and 10  m, respectively) but 
until recently their mass restricted them to species of larger body 
size (Hobson et al., 2019). In contrast, GLS have low power require-
ments, allowing the devices to be considerably lighter (<1 g; Bridge 
et al., 2011), and are relatively cheap but provide only two locations 
per day with varying levels of spatial inaccuracy (Halpin et al., 2021; 
Phillips et al., 2004).

Repeatability values of migration parameters may also vary 
across the annual cycle. For example, we might expect the pre-
breeding stages of migratory species to be more time-sensitive than 
post-breeding stages (Alerstam et al., 2003; McNamara et al., 1998). 

Repeatability in timing of arrival at breeding grounds has been 
demonstrated for several species (e.g. Conklin et al., 2013; Krietsch 
et al., 2017; Stanley et al., 2012), and may be related to the benefits 
of synchronous arrival times with mates (Gunnarsson et al., 2004; 
Morrison et al., 2019), and/or to exploiting consistently timed local 
resource peaks (Alerstam et al.,  2003). Familiarity with conditions 
at a certain location and time may improve chances of survival and 
breeding success compared to using a different site, or the same site 
at a different time (McNamara & Dall, 2010; Shimada et al., 2019). 
By contrast, timing of other stages (e.g. departure from breeding 
ground) may be less time sensitive, but constraints may still exist 
if carryover effects influence performance later in the annual cycle 
(Stutchbury et al., 2011).

In bird migration studies, repeatability has become standard for 
describing consistent individual differences in migratory behaviour. 
These studies are increasingly reporting high repeatability in migra-
tory timings, but how repeatability varies across the annual cycle 
and in relation to study and/or ecosystem characteristics is not yet 
clear. To address these issues, we performed a systematic review 
and phylogenetic multilevel meta-analysis to synthesise the cur-
rent literature and quantitatively assess the repeatability of avian 
migratory timings and possible sources of variation in repeatability 
estimates. We focus on the following five questions: Does repeat-
ability vary (a) across the annual cycle, (b) with tracking method, (c) 
across ecological groups (seabirds, landbirds and waterbirds; Geen 
et al., 2019), (d) between males and females, and (e) with the number 
of observations per individual?

2  |  MATERIAL S AND METHODS

2.1  |  Literature search

We aimed to conduct a comprehensive search for studies estimat-
ing repeatability of temporal parameters of avian migration using a 
combination of approaches. We focused on arrival at, and departure 
from, breeding and non-breeding grounds. First, we performed a 
systematic search for published studies using the Web of Science 
and Scopus online databases on 1st June 2021. Second, we con-
sulted a recently published meta-analysis of hormonal, metabolic 
and behavioural repeatability in birds (Holtmann et al., 2017), which 
included repeatability estimates of migration. We manually checked 
each entry from those sources to confirm suitability for our pur-
poses and extracted additional moderator variables to be used in our 
analyses (see below). Finally, to add to—and validate the accuracy 
of—the results of the literature search, we searched the reference 
lists of papers already in our accepted reference library. The details 
of these search strategies and the Boolean search strings used are 
presented in our Supporting Information, along with a flow diagram 
(often referred to as a PRISMA flow chart—the Preferred Reporting 
Items in Systematic Reviews and Meta-Analyses; Moher et al., 2009; 
O'Dea et al., 2021; Figure S1) which shows the stages at which stud-
ies were disqualified or eventually used in the current study.
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2.2  |  Inclusion and exclusion criteria

To be included in our analyses, observational studies needed to 
adhere to five main criteria. First, studies had to report repeatabil-
ity estimates in the form of intraclass correlation coefficients (ICC) 
using an ANOVA based (Lessells & Boag,  1987) or Linear Mixed 
Model (LMM)-based approach (Nakagawa & Schielzeth,  2010), 
or a Spearman/Pearson correlation coefficient (r; cf. Barbosa & 
Morrissey, 2021). If both ICC and r estimates were reported using 
the same data, we only included the ICC estimates in our data as 
this was the most commonly reported (>90%) repeatability metric 
in our dataset. Second, studies which calculated repeatability using 
dates when certain latitudes were crossed were excluded unless 
they were explicitly stated as the arrival or departure dates for the 
species. We relied on authors' descriptions as to what determines 
arrival at/departure from the breeding and non-breeding grounds. 
Third, we restricted all datasets to breeding adults only. We used 
this criterion because the refinement of migratory behaviour has 
shown to be a progressive process mediated by age and experience, 
particularly for long-lived species (Campioni et al.,  2019). Fourth, 
only English-language studies were included. Finally, in addition to 
repeatability estimates, studies also needed to report sample sizes, 
and moderator variables were extracted where reported and in-
cluded in our analyses (see below). Where any of the repeatability 
estimates or sample size data were missing, we attempted to contact 
authors (n = 2 studies) for this information. One author replied but 
was unable to provide the requested data, and so neither of these 
studies was included.

2.3  |  Study selection

The exact number of screened and included studies are shown in 
Figure S1, and a list of all studies included in the analyses can be found 
in the Data sources section. We used Rayyan software to screen ti-
tles and abstracts (Ouzzani et al., 2016). One person (KAF) screened 
the abstracts, using a decision tree (Figure S2). Approximately 93% 
of the 2,433 abstracts were excluded after screening. We performed 
full-text screening for the remaining 160 papers included after ab-
stract screening, from which 47 were included for data extraction. 
After searching the reference lists of these papers accepted for data 
extraction, we found an additional six suitable for our analyses, and 
included two repeatability estimates from our own paper (Franklin, 
Norris, et al., 2022), providing a total of 54 papers.

2.4  |  Data collection

Data were extracted from text, tables or figures. To extract data 
from figures, we used WebPlotDigitizer software (Rohatgi,  2015). 
All data were extracted by one author (KAF). In addition to the re-
peatability estimates (r or ICC) from each study, we also extracted 
the following moderator variables: the annual event for which 

repeatability was estimated (arrival at, or departure from, breed-
ing or non-breeding grounds), the method used to track individuals, 
the coordinates of tagging, and whether this was on the breeding 
or non-breeding grounds, study species, sex (male, female, mixed/
unknown), the number of individuals (n), the mean number of ob-
servations per individual (k) and year of publication. For studies that 
did not state k but reported the total number of observations, we 
calculated k by dividing the number of observations by the number 
of individuals. The methods used to track individuals were grouped 
into three categories, which represent the type of sampling method 
(Eulerian or Lagrangian) and the spatial and temporal accuracy of the 
method: (a) conventional (bird ringing, colour-ringing); (b) geoloca-
tion (geolocators); and (c) GPS (GPS, satellite, PTTs, radio-telemetry). 
If studies used >1 type of tracking method on different groups of 
individuals, we included both repeatability estimates. Finally, we re-
corded the statistic that was used to report repeatability (ICC or r), 
whether any fixed or random effects (in addition to individual as ran-
dom effect) were included when calculating repeatability (i.e. agree-
ment vs. adjusted repeatability; Nakagawa & Schielzeth, 2010), and 
whether those calculating (ANOVA based or LMM based) repeat-
ability reported the unstandardised variance components. The full 
list of moderators is found in our Supporting Information.

2.5  |  Data analysis

Studies included in our dataset varied in sample size, number of sam-
ples per individual and in how repeatability was estimated. Thus, it 
was important to weight studies appropriately and to convert re-
ported repeatabilities to a comparable statistic. We therefore con-
verted all repeatability estimates (ICC and r) to the standardised 
effect size Fisher's Z (Zr) along with the corresponding sampling 
variance for each study (as described in Holtmann et al., 2017 and 
McGraw & Wong, 1996). As correlation- and ANOVA-based repeat-
abilities can produce negative values, often reflecting noise around 
a statistical zero (Nakagawa & Schielzeth, 2010), we set the negative 
repeatability estimates/Zr values in our dataset (n = 13) to zero for 
our analyses. We used these Zr values and sampling variances (see 
below) in all meta-analytical models, but when plotting and report-
ing parameter estimates we back-transformed effect sizes to ICC 
to aid interpretation. The results of all the meta-analytic and meta-
regression models when including the negative repeatability esti-
mates are reported in the Supporting Information (Tables S12–19).

2.6  |  Meta-analysis

We fit meta-analytic and meta-regression multilevel linear mixed-
effects models, using the rma.mv function in the metafor package (v. 
3.0.2; Viechtbauer, 2010) in r (v. 3.6.2; R Core Team, 2019). Our data 
contained multiple levels and different types of non-independence 
(Noble et al., 2017). We partially accounted for this non-independence 
with random-effects and sampling variance–covariance matrices.
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All models included the following random effects: (a) paper ID, 
which encompasses multiple effect sizes extracted from the same 
paper, (b) cohort ID, which encompasses multiple effect sizes ob-
tained from the same group of birds within the same paper, (c) spe-
cies ID, which encompasses multiple effect sizes from the same 
species across papers, and (d) effect ID, which is a unit-level ran-
dom effect representing residual/within-study variance. In addi-
tion to species ID (a non-phylogenetic measure), we also included 
(e) phylogeny (modelled with a phylogenetic relatedness correla-
tion matrix), to account for species similarities due to evolutionary 
history (Cinar et al.,  2022). To generate the phylogeny, we used a 
phylogenetic tree from Jetz et al.  (2012), provided by Holtmann 
et al. (2017) and prepared on the basis of Hackett backbone (Hackett 
tree; Hackett et al., 2008). After trimming the tree using the species 
names in our dataset, we computed branch lengths using Grafen's 
method (Grafen, 1989) in the compute.brlen function in the r pack-
age ape (v. 5.5; Paradis & Schliep, 2019). For the final phylogenetic 
tree, see Figure S3.

Multiple repeatability estimates were measured on the same 
animals within a paper (cohort ID) which induces a correlation 
between sampling error variances (Noble et al.,  2017). Thus, 
we constructed variance–covariance matrices to model shared 
sampling error for effect sizes from the same cohort, assuming 
a 0.5 correlation (Noble et al.,  2017). We also ran the phyloge-
netic meta-analytic model assuming a 0.25 and 0.75 correlation 
between estimates from the same cohort. All three correlations 
yielded qualitatively similar results; thus, we assume a 0.5 cor-
relation throughout, and present the results for the other correla-
tion values in the ‘Sensitivity Analysis’ section in our Supporting 
Information (Table S11).

A multilevel intercept-only meta-analytic model was fitted to es-
timate the overall mean of the effect sizes with the random effects 
listed above. To evaluate the effects of moderators, we ran a univar-
iate multilevel meta-regression model for each of the following: (a) 
tracking method, (b) ecological group, (c) sex, (d) annual event and (e) 
k, the number of observations per individual. Interaction terms were 
not included between ecological group and (a) method or (b) annual 
event, due to insufficient sample sizes of certain levels of categorical 
variables.

For meta-analytic models, we quantified a multilevel version of 
the ‘heterogeneity’ measures (I2), which indicate the amount of vari-
ance unexplained after controlling for sampling variance (Higgins 
& Thompson,  2002; Nakagawa & Santos,  2012) while, for meta-
regression, we estimated the percentage of heterogeneity explained 
by the moderators using marginal R2 (Nakagawa & Schielzeth, 2013) 
using the function ‘r2_ml’ in the r package orchaRd v.0.0.0.9000 
(Nakagawa et al., 2021). Missing and unreported data were not in-
cluded in the meta-regressions (i.e. we ran complete-case analyses). 
Results of the main effect model and meta-regressions with categor-
ical moderators were graphically represented as orchard plots using 
code adapted from the r package orchaRd.

All model specifications, model selection procedures and associ-
ated coding are provided in our Supporting Information. We followed 

reporting guidelines outlined in the PRISMA-EcoEvo checklist for 
this study (O'Dea et al., 2021).

2.7  |  Sensitivity analysis and publication bias

To test for small-study bias, we fitted a multilevel meta-regression 
with sampling standard error (i.e. the square root of sampling vari-
ance) as a moderator (a modification of Egger's regression). Likewise, 
to test for time-lag bias (i.e. a decline effect), we fitted a multilevel 
meta-regression with the year of publication (mean-centred, to help 
with interpretation) as a continuous moderator. Finally, we fitted an 
‘all-in’ publication bias test, which included the sampling standard 
error and year of publication to test for small-study bias and time-lag 
bias, as well as the moderators (above) to account for heterogeneity 
in our data (Nakagawa et al., 2022).

3  |  RESULTS

A total of 177 effect sizes covering dates of arrival at and depar-
ture from breeding and non-breeding grounds were obtained from 
54 papers, including 87 cohorts of birds (Table 1). These effect sizes 
represent 47 species, comprising 18 landbird, 15 seabird and 14 
waterbird species. For most species, estimates were only reported 
by one study and only a few species had estimates from several 
studies (five studies estimated repeatability for Black-tailed godwit 
Limosa limosa, three for Bar-tailed godwit Limosa lapponica, three for 
Pied flycatcher Ficedula hypoleuca and two for Barn swallow Hirundo 
rustica).

The median and mean sample sizes (number of individuals 
tracked) per effect size were 12 and 39.5, respectively (range: 3–
1,232; Table 1). Conventional methods (ringing and colour-ringing) 
allowed for a larger number of individuals to be tracked across all 
three ecological groups compared to GLS and satellite methods and 
over a longer period (Table 1). Most studies tracked individuals over 
2, 3 or 4 years, although one study tracked some individuals for up to 
20 years (k of study = 12.4 years). The majority of the extracted re-
peatability values originated from temperate latitudes in Europe and 
North America (77.9%; Figure 1). Of the articles calculating ANOVA- 
or LMM-based repeatability, only 26% reported the unstandardised 
estimates for both within- and among-individual variances.

3.1  |  Overall repeatability and heterogeneity

The phylogenetic multilevel meta-analysis (intercept-only) model 
revealed a mean repeatability estimate (ICC) for all avian migratory 
timings across the whole annual cycle of 0.414 (95% confidence in-
terval, hereafter, CI = [0.313–0.508]; Figure 2a; Table S3). A similar 
model, but without controlling for phylogeny, also showed a sta-
tistically significant overall repeatability (multilevel meta-analysis: 
ICC[all] = 0.421, CI = [0.348:0.490]; Table S3). The total heterogeneity 
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in the dataset was high (I2[total] = 84.2%), which is common across 
ecological meta-analyses (Senior et al.,  2016). When I2 was parti-
tioned, 49.7% was attributed to effect ID, 0% to paper ID, 0% to 
cohort ID, 27.3% to species ID and 7.2% to phylogeny.

3.2  |  Variation in repeatability estimates

Repeatability values vary across the annual cycle, with departure 
from the non-breeding grounds being the most repeatable, and 

departure from the breeding grounds being the least repeatable 
(ICC[depart non-breeding] = 0.522, CI = [0.391:0.636]; ICC[arrival breeding] = 0.381, 
CI  =  [0.250:0.503]; ICC[arrival non-breeding]  = 0.416, CI  =  [0.274:0.547]; 
ICC[depart breeding]  = 0.326, CI  =  [0.172:0.469]; Figure  2b; Table  S4). 
However, there were only statistically significant differences between 
departure from the breeding grounds and (a) arrival at and (b) departure 
from, the non-breeding grounds, and between arrival at the breeding 
grounds and departure from the non-breeding grounds (Table S4).

There was no statistically significant difference in repeat-
ability between males and females, but there was between 

TA B L E  1  Number of effect sizes, cohorts, studies, the median (range) sample size of individuals and the median (range) repeated 
measures per individual (k) analysed in the meta-analyses. The total dataset is summarised separately for the overall meta-analysis, followed 
by a summary that illustrates the distribution of data based on ecological group (as described by Geen et al., 2019) and tracking method of 
individuals included in the analyses

Meta-analysis Effect sizes Cohort Studies Median n (range)
Median k 
(range)

All data 177 87 54a 12 (3–1,232) 2.3 (1.1–12.4)

Ecological group Tracking method

Landbird Conventional 19 19 11 39 (12–480) 2.3 (2.0–5.2)

GLS 19 6 6 9 (3–33) 2 (2.0–2.3)

Satellite 16 4 3 6 (3–25) 3.55 (2.6–5.0)

Waterbird Conventional 21 18 12 44 (11–180) 2.7 (2.0–12.4)

GLS 18 6 4 16 (6–36) 2.5 (2.0–2.9)

Satellite 16 5 5 12 (5–35) 3 (2.0–4.5)

Seabird Conventional 2 2 1 940 (648–1,232) 4.35 (4.3–4.4)

GLS 54 24 10 7 (3–76) 2 (1.1–4.3)

Satellite 12 3 3 4 (4–82) 2.93 (2.5–3.5)

aNote that the total number of studies is one less than the sum of the number of studies when divided by ecological group and tracking method as 
one study tracked the same species using two different methods.

F I G U R E  1  The marking locations of birds for all studies with repeatability estimates collated from the literature and included in analyses, 
coloured by ecological group (waterbird, seabird or landbird), and shaped by tracking method (conventional, satellite or GLS)
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males and the ‘mixed’ (both/unknown) group (ICC[male]  = 0.287, 
CI  =  [0.152:0.419]; ICC[female]  = 0.397, CI  =  [0.229:0.545]; 
ICC[mixed]  = 0.499, CI  =  [0.417:0.573]; Figure  2e; Table  S6). 
However, this effect seemed to be due to the fact that the ma-
jority of repeatability estimates measured for males only were 
represented by the two least repeatable annual events (arrival at 
breeding grounds, n = 22; departure from the breeding grounds, 
n  =  7; out of 31), and sample sizes for males and females only 
were small. None of the other moderators (tracking method 
(ICC[conventional]  = 0.306, CI  =  [0.202:0.409]; ICC[GLS]  = 0.512, 
CI  =  [0.404:0.608]; ICC[satellite]  = 0.440, CI  =  [0.292:0.575]; 
Figure  2c; Table  S5), ecological group (ICC[seabird]  = 0.520, 
CI  =  [0.398:0.626]; ICC[waterbird]  = 0.404, CI  =  [0.289:0.513]; 
ICC[landbird] = 0.333, CI = [0.205:0.454]; Figure 2d; Table S7) or num-
ber of samples per individual (slope = −0.011, CI = [−0.062:0.041]; 
Figure S4; Table S8)) showed statistically significant influences on 
repeatability.

3.3  |  Model selection and multi-model inference

We found five candidate models within two units of AICc from the 
best-fitting model. All five moderators tested in our univariate mod-
els were included in the top five models, with annual event being 
the most important predictor (Table S9). Our model-averaging ap-
proach highlighted the most repeatable period of the annual cycle 
to be departure from the non-breeding grounds, with statistically 
significant differences in repeatability between that period and (a) 
arrival at and (b) departure from, the breeding grounds. Arrival at 
the non-breeding grounds was also statistically significantly more 
repeatable than departure from the breeding grounds (Table S10). 
The importance of this moderator is consistent with our univariate 
models. However, the association we observed in our univariate 
meta-regression with sex included as a moderator was not robust 
to the model averaging. Finally, in our top model, we found repeat-
ability of avian migratory behaviours to be statistically significantly 
influenced by annual event and ecological group (Table S9).

3.4  |  Sensitivity analysis and publication bias

In the univariate meta-regression models to test for bias, our re-
sults revealed little statistical sign of small-study or time-lag bias. 
The slope of sampling standard error was not statistically signifi-
cant (slope = 0.213, CI = [−0.326:0.752]), indicating that effect sizes 
with larger SEs (i.e. more uncertain effect sizes) do not tend to be 
larger (Table S20), and the estimated effect of publication year was 
very close to zero (slope  =  0.008, CI  =  [−0.002:0.019]), suggest-
ing there has been no linear change in effect sizes over time since 
the first effect size was published (Table S21). These results were 
consistent with those from the multi-moderator meta-regression 
which explained a sizeable amount of the heterogeneity in our data 
(R2 = ~21%; Figures S5–S6; Table S22).

4  |  DISCUSSION

Advances in tracking technology have allowed the movements of 
individual birds on repeated journeys to be recorded, which has 
fuelled interest in the scale of individual variation in migratory jour-
neys. Our meta-analysis of avian studies tracking the repeat jour-
neys of individuals reveals that repeatability estimates (ICC) of avian 
migration timing averaged 0.414 (95% CI = 0.3–0.5), although there 
existed a high heterogeneity (I2[total] > 84%). Repeatability estimates 
of the four annual events (arrival at, and departure from, breeding 
and non-breeding grounds) focused on in this study were found to 
vary, with departure from the non-breeding grounds being the most 
repeatable. However, there was no statistically significant differ-
ence in repeatability across ecological groups, the tracking method 
used to calculate repeatability, between sexes, or with the number 
of measurements per individual.

Our overall ICC of 0.414 was similar to the migration repeatabil-
ity estimate from an earlier meta-analysis (ICC = ~0.46; Holtmann 
et al., 2017). Given the spread of migratory timings that is typical for 
migratory bird populations (Kikuchi & Reinhold, 2021), our findings 
suggest that consistent individual differences in arrival at, and de-
parture from, breeding and non-breeding grounds is a common fea-
ture of avian migration. Population-level shifts in phenology of many 
migratory species are common at present (Gordo, 2007; Gunnarsson 
& Tómasson, 2011), and these could arise from individuals respond-
ing directionally to changing environmental conditions and/or by 
generational changes in the frequency of individuals with different 
timings within populations. For example, Gill et al. (2014) showed in-
dividual Icelandic black-tailed godwits (L. l. islandica) to be consistent 
in spring arrival dates, and that advancing spring arrival dates were 
driven by new recruits to the population with differing phenology 
distributions than their predecessors. Changes in the distribution of 
phenologies within a population could reflect changes in the con-
ditions influencing the development of individual phenologies and/
or their subsequent survival rates (Gill et al.,  2019), and could be 
influenced by heritable components of migratory behaviours (see 
Dochtermann et al., 2019). Consequently, a focus on understand-
ing (a) the environmental and/or demographic factors influencing 
between-individual phenological variation and (b) the extent to 
which individual variation in phenology is directional with respect 
to changing environmental conditions is likely to be needed to un-
derstand how phenological change happens, and thus how rapidly 
species may adapt to changing environmental conditions.

Repeatability values were found to vary significantly across the 
annual cycle and, contrary to our predictions, departure from the 
non-breeding grounds was found to be the most repeatable. This 
suggests that the other annual events likely have higher within-
individual variation relative to between-individual variation. The sig-
nificantly higher repeatability of departure from the non-breeding 
grounds than arrival at the breeding grounds might suggest that the 
environmental conditions experienced on migration can influence 
timing of arrival, which may be especially true for long-distance 
migrants (Drake et al., 2014; Carneiro et al., 2019; but see Brown 
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et al.,  2021). Departure from the breeding grounds and hence ar-
rival at the non-breeding grounds may also be constrained by events 
during the breeding season. For example, the timing of departure 
from the breeding grounds is likely to vary with the timing and out-
come of breeding attempts, which can vary across years and indi-
viduals. For example, in many seabirds, successful breeders tend to 
leave later than failed breeders (Catry et al., 2013), while many migra-
tory passerines and waders may lay replacement clutches following 
nest loss (Morrison et al.,  2019), with knock-on effects for depar-
ture dates. This may therefore increase within-individual variation 
in these timings and thereby decrease repeatability. However, rela-
tively few studies have considered the effect of breeding outcome 
on individual repeatability in migratory timing (Catry et al.,  2013; 
Phillips et al., 2005; Yamamoto et al., 2014).

Across the three ecological groups (waterbird, seabird and land-
bird), there was no statistically significant variation in repeatability 
values, suggesting consistent individual differences in migratory 
timings is a common feature of migratory systems (Gill et al., 2014). 
However, most studies that have investigated repeatability in migra-
tion have focused on species breeding at temperate and polar lati-
tudes. The locations extracted for studies in this review represent 
where individuals were tagged (which were the breeding grounds for 
89% of studies), but many species spend their non-breeding period 
in the tropics. Our review has highlighted a lack of studies explor-
ing repeatability of species breeding in the tropics (but see Jaeger 
et al., 2017; Franklin, Norris, et al., 2022), where seasonality is less 
marked and, particularly for seabirds, resources are often less pre-
dictable than at higher latitudes (Weimerskirch, 2007). We therefore 
propose this should be a priority for future research. For some tropi-
cal species, at least for most tropical seabirds, the timing of breeding 
tends to be more variable at the population level compared to higher 
latitudes with some species breeding year-round, while others show 
flattened peaks that extend over several months. Consequently, re-
peatability may be naturally inflated when a large number of viable 
phenologies exist in a population. However, many tropical species 
do not make long-distance migrations, which may make finding in-
formation on arrival and departure timings difficult. A recent study 
on a population of blue tits Cyanistes caeruleus showed there to be 
substantial individual variation and high repeatability in the timing 
of arrival at the breeding grounds (Gilsenan et al., 2020), suggesting 
that repeatability in timings may be a common feature even in spe-
cies that are generally considered non-migratory.

Despite the different temporal and spatial resolutions of the 
three tracking methods considered in this study, there was no 
statistically significant effect of tracking method on repeatability 
estimates. Considering that conventional methods rely on the spa-
tiotemporal distribution of colour-ring observers and/or the activ-
ity of ringing stations, whereas geolocators and GPS/satellite tags 
are more likely to be tracking individuals in real time, it is perhaps 
surprising that repeatability is captured equally well by all three 
methods. However, it is likely that there will be lower confidence 
in repeatability estimates measured using methods with lower res-
olution (see Korner-Nievergelt et al., 2012; Strandberg et al., 2009). 

Very few studies have used two or more different methods to esti-
mate repeatability of a single species, but those that did reported 
no variation with type of device (Senner et al., 2019). This may be 
different, however, when estimating spatial repeatability due to 
the different spatial resolutions and measurement errors of each 
method (see Dingemanse et al.,  2022). For example, geolocators 
can have large errors around location estimates (Halpin et al., 2021; 
Phillips et al., 2004), which may underestimate repeatability due to 
uncertainty when a bird reaches an exact location. Nonetheless, it 
is important to note the costs and limitations associated with each 
tracking method that is likely to be a constraint of the study system.

The number of studies tracking repeated individual migratory 
journeys has increased greatly over the past decade, but the number 
that actually report repeatability of key elements of these journeys 
is much lower. Reasons as to why these estimates have not been 
reported, if given, have included the number of individuals with re-
peat tracks being too small (e.g. n = 9; van Bemmelen et al., 2019). 
However, we have identified studies calculating repeatability with as 
few as three individuals (Vardanis et al., 2016; Wellbrock et al., 2017; 
but see Wolak et al.,  2012). Regardless of the method used, our 
study showed no effect of the number of measurements per indi-
vidual on repeatability suggesting that calculating repeatability is 
always worthwhile, although it is important to note that the power 
of those estimates with small samples may be low (Dingemanse & 
Dochtermann, 2013).

The repeatability estimates used in this study were all for breed-
ing adults, and it is possible that migratory timings could vary with 
age, especially if they are refined with age and experience (e.g. 
Campioni et al., 2019). This age-related variation may be especially 
true for long-lived individuals; however, shifts in migratory timings 
with age would need to be directional in order for ontogeny to drive 
phenological change. In addition, a potential caveat, which may af-
fect repeatability estimates and thus comparisons across studies, 
is the different definitions and calculations of breeding and non-
breeding locations across studies. For example, arrival at the breed-
ing grounds can range from entry into the nest/burrow (Yamamoto 
et al.,  2014), entry to breeding territory (Kentie et al.,  2017) and 
entry into region/area (Carneiro et al., 2019), which may cause noise 
and, potentially, systematic bias in repeatability estimates across 
studies. For example, arrival into a breeding territory could be more 
repeatable than arrival into the breeding region. This again, may be 
down to the tracking method used and its resolution, and the species 
in question.

Repeatability represents the proportion of the total phenotypic 
variation (sum of between-individual variance, within-individual 
variance and measurement error) in the sampled population that 
can be attributed to variation between groups (usually individu-
als). Therefore, it is important to note that the same repeatability 
estimates can arise from different patterns of these variance com-
ponents (see Dochtermann & Royauté, 2019). Interpreting repeat-
ability would therefore be aided greatly by knowing the spread 
of variation that exists in the sampled population and estima-
tions of measurement error. Only 26% of studies included in our 



10  |   Journal of Animal Ecology FRANKLIN et al.

meta-analysis provided unstandardised estimates for both with-
in- and among-individual variances, which is slightly lower than 
that found by Sánchez-Tójar et al.  (2022) (30.7%, 95% CI = 22.0 
to 41.0), and none formally quantified measurement error. While 
we included tracking method in our meta-analysis to investigate 
how repeatability varies with devices with varying measurement 
errors, this component can also vary with environmental condi-
tions (Dingemanse et al., 2022) and thus is likely to add noise to 
comparative patterns in repeatability. We therefore support the 
recommendation that authors report the variance components 
and measurement errors underpinning the reported repeatability 
estimates where possible, as well as the coefficients of variation 
for each hierarchical level (Dingemanse & Wright, 2020; Sánchez-
Tójar et al.,  2022), and the specific details of model structure 
(error structures, transformations and structure of random and 
fixed effects) to aid evaluation of differences in specific variance 
components (Pick et al.,  2019; Royauté & Dochtermann,  2021; 
Sánchez-Tójar et al., 2022). Very few of the studies in our litera-
ture search reported these elements, which may have reduced the 
power of our models.

In addition to repeatability in migratory timing, it is also import-
ant to consider repeatability in migratory routes and locations. This 
aspect of migration was not touched upon in this study, but many 
studies also report high levels of fidelity to breeding and winter-
ing locations (e.g. Delord et al.,  2019; Grist et al.,  2014; Ramírez 
et al., 2016), and migratory routes (López-López et al., 2014; but 
see also Dias et al.,  2011; Dias et al.,  2013). Throughout the lit-
erature, a variety of methods have been used to investigate spa-
tial repeatability (e.g. Dias et al., 2013; Fayet et al., 2016; Ramírez 
et al., 2016), making comparisons across studies difficult. However, 
understanding repeatability of migration in both space and time 
will be crucial for understanding how species will adapt to environ-
mental change.

In conclusion, the similar repeatability estimates of avian mi-
gration timing reported by studies of many different species sug-
gest that consistent individual differences in migratory timings 
is likely to be a common feature of migratory systems. In many 
cases, repeated collection of individual migration data is not in-
tentional, but rather a by-product of retrieving a tracking device 
two or more years post-deployment. There is also a current gap in 
the literature with limited information on tropical species, which 
may limit our understanding of how these species may respond 
to environmental change in less strongly seasonal environments. 
As phenological responses to environmental change will depend 
on the processes that drive within- and between-individual vari-
ation and change in migratory timings, methods to disentangle 
within- and between-individual variation should be incorporated 
into study designs, for example through structured sampling of 
individuals across phenological ranges. As migration phenologies 
are often associated with variation in demographic rates, un-
derstanding the consequences of phenological variation will be 
important for future conservation management strategies and 
understanding population change.
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