220 research outputs found

    Hyperglycemia selectively increases the expression of cycloxygenase-2 in human aortic endothelial cells

    Get PDF
    The conversion of arachidonic acid to vasoactive prostanoids including prostacyclin, prostaglandins and tromboxanes is mediated by cycloxygenase (COX). Two isoforms of enzyme have been shown: a constitutive (COX-1) and an inducible form (COX-2). Products of the arachidonic acid metabolism may be involved in the impairment of endothelium-dependent vasodilatation observed both in experimental models and in patients with diabetes mellitus. To determine the effect of hyperglycemia on COX-1 and COX-2 expression, human aortic endothelial cells (HAEC) were exposed to normal (5.5mM) and high (22.2mM) concentrations of glucose for 5 days. Cells were also treated with mannitol (22.2 mM) to rule out an effect due to osmolality changes. COX-1 and COX-2 mRNA and protein expressions were analyzed by Southern and Western blotting, respectively. Treatment with high glucose was associated with a two-fold increase of both COX-2 mRNA (P<0.05) and protein levels (P<0.05), whereas no changes were observed for COX-1. Moreover high concentration of mannitol did not exert any significant effect. The present study demonstrates that both isoforms of COX are normally expressed in HAEC, but only COX-2 was stimulated after exposure to high glucose. The results of the present study may provide molecular basis to understand hyperglycemia-induced endothelial dysfunctio

    Differential effects on membrane permeability and viability of human keratinocyte cells undergoing very low intensity megasonic fields

    Get PDF
    Among different therapeutic applications of Ultrasound (US), transient membrane sonoporation (SP) - a temporary, non-lethal porosity, mechanically induced in cell membranes through US exposure - represents a compelling opportunity towards an efficient and safe drug delivery. Nevertheless, progresses in this field have been limited by an insufficient understanding of the potential cytotoxic effects of US related to the failure of the cellular repair and to the possible activation of inflammatory pathway. In this framework we studied the in vitro effects of very low-intensity US on a human keratinocyte cell line, which represents an ideal model system of skin protective barrier cells which are the first to be involved during medical US treatments. Bioeffects linked to US application at 1 MHz varying the exposure parameters were investigated by fluorescence microscopy and fluorescence activated cell sorting. Our results indicate that keratinocytes undergoing low US doses can uptake drug model molecules with size and efficiency which depend on exposure parameters. According to sub-cavitation SP models, we have identified the range of doses triggering transient membrane SP, actually with negligible biological damage. By increasing US doses we observed a reduced cells viability and an inflammatory gene overexpression enlightening novel healthy relevant strategies

    Ultrasound delivery of Surface Enhanced InfraRed Absorption active gold-nanoprobes into fibroblast cells: a biological study via Synchrotron-based InfraRed microanalysis at single cell level

    Get PDF
    Ultrasound (US) induced transient membrane permeabilisation has emerged as a hugely promising tool for the delivery of exogenous vectors through the cytoplasmic membrane, paving the way to the design of novel anticancer strategies by targeting functional nanomaterials to specific biological sites. An essential step towards this end is the detailed recognition of suitably marked nanoparticles in sonoporated cells and the investigation of the potential related biological effects. By taking advantage of Synchrotron Radiation fourier transform infrared micro-spectroscopy (SR-microftiR) in providing highly sensitive analysis at the single cell level, we studied the internalisation of a nanoprobe within fibroblasts (NIH-3T3) promoted by low-intensity US. To this aim we employed 20 nm gold nanoparticles conjugated with the IR marker 4-aminothiophenol. The significant Surface Enhanced Infrared Absorption provided by the nanoprobes, with an absorbance increase up to two orders of magnitude, allowed us to efficiently recognise their inclusion within cells. Notably, the selective and stable SR- microftiR detection from single cells that have internalised the nanoprobe exhibited clear changes in both shape and intensity of the spectral profile, highlighting the occurrence of biological effects. Flow cytometry, immunofluorescence and murine cytokinesis-block micronucleus assays confirmed the presence of slight but significant cytotoxic and genotoxic events associated with the US-nanoprobe combined treatments. our results can provide novel hints towards US and nanomedicine combined strategies for cell spectral imaging as well as drug delivery-based therapies

    “Good Vibrations”: A workshop on oscillations and normal modes

    Get PDF
    We describe some theatrical strategies adopted in a two hour workshop in order to show some meaningful experiments and the underlying useful ideas to describe a secondary school path on oscillations, that develops from harmonic motion to normal modes of oscillations, and makes extensive use of video analysis, data logging, slow motions and applet simulations. Theatre is an extremely useful tool to stimulate motivation starting from positive emotions. That is the reason why the theatrical approach to the presentation of physical themes has been explored by the group “Lo spettacolo della Fisica” (http://spettacolo.fisica.unimi.it) of the Physics Department of University of Milano for the last ten years (Carpineti et al., JCOM, 10 (2011) 1; Nuovo Cimento B, 121 (2006) 901) and has been inserted also in the European FP7 Project TEMI (Teaching Enquiry with Mysteries Incorporated, see http://teachingmysteries.eu/en) which involves 13 different partners coming from 11 European countries, among which the Italian (Milan) group. According to the TEMI guidelines, this workshop has a written script based on emotionally engaging activities of presenting mysteries to be solved while participants have been involved in nice experiments following the developed path

    Some didactical suggestions for a deeper embedding of DC circuits into electromagnetism

    Get PDF
    Undergraduate students often encounter great difficulties in understanding Ohm's law and electrical circuits. Considering the widespread students' beliefs and their common mistakes, as they come out from the literature and our teaching experience, we think that a relevant source of these problems comes from the fact that electrical circuits are generally treated separately from the other topics of electromagnetism, with poor reference to the circulation of the electric field. We present here a way to deal with electrical circuits that could help students to overcome their difficulties. In our approach, the electric field is the protagonist and the mathematical tool the students are asked to use is its circulation. In the light of the circulation of the electric field, the experimental Ohm's law is revisited, the concept of electromotive force is discussed and some suggestions to eliminate common misconceptions about the role of a battery in a circuit are presented

    Infrared nanospectroscopy of individual extracellular microvesicles

    Get PDF
    Extracellular vesicles are membrane-delimited structures, involved in several inter-cellular communication processes, both physiological and pathological, since they deliver complex biological cargo. Extracellular vesicles have been identified as possible biomarkers of several pathological diseases; thus, their characterization is fundamental in order to gain a deep understanding of their function and of the related processes. Traditional approaches for the characterization of the molecular content of the vesicles require a large quantity of sample, thereby providing an average molecular profile, while their heterogeneity is typically probed by non-optical microscopies that, however, lack the chemical sensitivity to provide information of the molecular cargo. Here, we perform a study of individual microvesicles, a subclass of extracellular vesicles generated by the outward budding of the plasma membrane, released by two cultures of glial cells under different stimuli, by applying a state-of-the-art infrared nanospectroscopy technique based on the coupling of an atomic force microscope and a pulsed laser, which combines the label-free chemical sensitivity of infrared spectroscopy with the nanometric resolution of atomic force microscopy. By correlating topographic, mechanical and spectroscopic information of individual microvesicles, we identified two main populations in both families of vesicles released by the two cell cultures. Subtle differences in terms of nucleic acid content among the two families of vesicles have been found by performing a fitting procedure of the main nucleic acid vibrational peaks in the 1000–1250 cm-1 frequency range

    Mid-Infrared Bloch Surface Waves for biosensing applications

    Get PDF
    We report on the design, fabrication, and spectroscopic characterization of a 1D Photonic Cristal (1DPC) sustaining Bloch Surface Waves (BSWs) in the mid-infrared. The reported all-dielectric 1DPC structure shows potential for label-free biosensing applications to medical diagnostics
    • …
    corecore