28 research outputs found

    Observations of iodine speciation and cycling in the hydrosphere

    Get PDF
    Iodine is an important element in oceanic, atmospheric, and terrestrial systems. Firstly, radical reactions in the troposphere can lead to significant ozone depletion, and secondly, nucleation of gaseous iodine molecules can produce new aerosol formation events, presenting possible direct and indirect natural cooling effects on climate. In the terrestrial environment iodine is a vital micronutrient for all mammals, with a lack of iodine intake leading to several debilitating disorders such as goiter and cretinism. The aim of this study was to investigate iodine systematics, and particularly speciation, in the atmosphere (aerosols, rain, and snow) and terrestrial hydrosphere (lakes) in order to gain a better understanding of how iodine moves between and within each environmental compartment. A subsidiary aim was to develop an inexpensive, but sensitive and accurate method for iodine quantification in soils and sediments using conventional analytical equipment. Rain and snow samples were taken from both northern (Germany, Switzerland, Ireland, Greenland) and southern (Australia, New Zealand, Chile) hemispheres whereas aerosols were obtained from Mace Head, Ireland using cascade (5 stages) and PM 2.5 impactors. Iodine cycling in lakes was investigated in the Mummelsee, a small headwater lake in the Black Forest. Speciation measurements were conducted by coupling an ion chromatograph to an ICP-MS and the organic fraction calculated as total iodine minus the inorganic species iodide and iodate. Organically bound iodine was the most abundant fraction in the atmospheric aqueous phase, despite the fact that iodine oxides are currently thought to be the theoretical sink species. Aerosols from Mace Head, Ireland, contained a median of 50 pmol m-3 total iodine, with more than 90 % being associated with organic matter. Iodide was the next most abundant species (median 5 %) with iodate being the least abundant (median 0.8 %). Similar results were found in the precipitation samples from northern and southern hemispheres, with organic iodine composing over half of the total iodine, and in the snow from Greenland up to 88 %; although in general the organic fraction was lower in precipitation than in aerosols. Up to 5 unidentified peaks, representing iodine species in addition to iodide and iodate, were observed in aerosol and precipitation chromatograms, providing direct evidence for organic iodine compounds in aerosols and precipitation. While these species remain unidentified, they are thought to be anionic and relatively small (i.e. low molecular weight). It is suggested that these compounds and iodide form during (photolytic) decomposition of organo-I of high molecular weight, the organic material possibly stemming from the ocean surface microlayer. It was also found that orographically induced precipitation significantly effects iodine concentrations in snow, with iodine levels decreasing exponentially with altitude over a transect in the Black Forest; indeed, more than halving (38 to 13 nmol l-1) over an altitude change of 840 m and horizontal distance of only 5 km. It is suggested that orographic affects may be more important than lateral distance from the ocean in determining iodine levels in continental precipitation. Once precipitation enters terrestrial ecosystems it may interact with soils, rocks, and biota. Iodine levels in the Mummelsee were very similar to rain and snow, averaging 15.2 ± 2.4 nmol l-1, suggesting at very little iodine input from the catchment geology. Iodine in the lake and the spring inflow was dominantly associated with organic matter with, on average, 85 ± 7 % organically bound. However, inorganic iodine cycling in the lake was also important, and displayed pronounced redox chemistry, with both iodide release from the sediments and iodate reduction in the hypolimnion during anoxic stratified conditions. The iodide flux (up to 10.1 nmol m-2 d-1) back into the water column is probably due to the decomposition of detritus in the top few centimeters of the sediments. In contrast to the hypolimnion, iodide was removed from the epilimnion during the summer and autumn months, whereas iodate levels increased slightly over the same time period, suggesting at the importance of biological reactions. This was supported by a sediment core that contained high iodine concentrations, averaging 92 μmol kg-1 total iodine, and a significant correlation with organic carbon (p<0.001). The analytical method entailed combusting sediment or soil samples in the oven of an AOX apparatus at 1000 oC and trapping the vapours in Milli-Q water. The solution was then analysed for iodine by a kinetic UV/Vis photospectrometry whereby iodide quantitatively catalyses the oxidation of As3+ and reduction of chromophoric Ce4+. The method was shown to be sensitive (detection limit 49 ng at 95 % confidence) and precise with relative standard deviations less than 5%. In conclusion, while this work has shown that organic matter plays a very important role in the hydrosphere, particularly in regards to iodine cycling, considerably more work needs to be conducted on themes such as identifying the organic iodine species, how is the iodine bound to the organic material and what is the role of organisms in the formation of organic iodine. With the current interest in iodine chemistry it is hoped that these and many other pressing questions will be answered in the near future

    Quantifizierung lokaler Grundwassereintritte in die Spree und deren Bedeutung für die Verockerungsproblematik in der Laustiz

    Get PDF
    Local groundwater inflow is an unknown but central component for the precipitation and accumulation of iron in the Spree River, Lusatia. In this study, the natural tracer radon was used to map and quantify local groundwater inflows into the Spree and Kleine Spree rivers in the Lusatian lignite mining district. During two measurement campaigns, the total groundwater inflow for a 20 km long reach of the Kleine Spree and a 34 km long reach of the Spree ranged between ~3,000 and ~7,000 m³ d⁻¹ (Kleine Spree) and between ~20,000 and ~38,000 m³ d⁻¹ (Spree). Particularly high groundwater inflow was identified (up to 70% of total inflow) along the Spreewitzer Rinne, a local aquifer consisting of excavated mining materials. Along these river reaches, large amounts of dissolved iron are entering the rivers with inflowing groundwater. Using the measured iron and sulphate loadings, we calculated that up to 120 tons/day of iron (oxy)-hydroxide was retained in the combined Spree and Klein Spree catchments

    Dissolved oxygen isotope modelling refines metabolic state estimates of stream ecosystems with different land use background

    Get PDF
    Dissolved oxygen (DO) is crucial for aerobic life in streams and rivers and mostly depends on photosynthesis (P), ecosystem respiration (R) and atmospheric gas exchange (G). However, climate and land use changes progressively disrupt metabolic balances in natural streams as sensitive reflectors of their catchments. Comprehensive methods for mapping fundamental ecosystem services become increasingly important in a rapidly changing environment. In this work we tested DO and its stable isotope (18^{18}O16^{16}O) ratios as novel tools for the status of stream ecosystems. For this purpose, six diel sampling campaigns were performed at three low-order and mid-latitude European streams with different land use patterns. Modelling of diel DO and its stable isotopes combined with land use analyses showed lowest P rates at forested sites, with a minimum of 17.9 mg m2^{-2} h1^{-1}. Due to high R rates between 230 and 341 mg m2^{-2} h1^{-1} five out of six study sites showed a general heterotrophic state with P:R:G ratios between 0.1:1.1:1 and 1:1.9:1. Only one site with agricultural and urban influences showed a high P rate of 417 mg m2^{-2} h1^{-1} with a P:R:G ratio of 1.9:1.5:1. Between all sites gross G rates varied between 148 and 298 mg m2^{-2} h1^{-1}. In general, metabolic rates depend on the distance of sampling locations to river sources, light availability, nutrient concentrations and possible exchanges with groundwater. The presented modelling approach introduces a new and powerful tool to study effects of land use on stream health. Such approaches should be integrated into future ecological monitoring

    Silicon increases the phosphorus availability of Arctic soils

    Get PDF
    Abstract Phosphorus availability in soils is an important parameter influencing primary production in terrestrial ecosystems. Phosphorus limitation exists in many soils since a high proportion of soil phosphorus is stored in unavailable forms for plants, such as bound to iron minerals or stabilized organic matter. This is in spite of soils having a high amount of total soil phosphorus. The feasibility of silicon to mobilize phosphorus from strong binding sites of iron minerals has been shown for marine sediments but is less well studied in soils. Here we tested the effect of silicon on phosphorus mobilization for 143 Artic soils (representing contrasting soil characteristics), which have not been affected by agriculture or other anthropogenic management practices. In agreement with marine studies, silicon availabilities were significantly positive correlated to phosphorus mobilization in these soils. Laboratory experiments confirmed that silicon addition significantly increases phosphorus mobilization, by mobilizing Fe(II)-P phases from mineral surfaces. Silicon addition increased also soil respiration in phosphorus deficient soils. We conclude that silicon is a key component regulating mobilization of phosphorous in Arctic soils, suggesting that this may also be important for sustainable management of phosphorus availability in soils in general
    corecore