202 research outputs found

    Managing cognition in progressive supranuclear palsy

    Get PDF
    Cognitive impairment is integral to the syndrome of progressive supranuclear palsy. It is most commonly described as a frontal dysexecutive syndrome but other impairments include apathy, impulsivity, visuospatial and memory functions. Cognitive dysfunction may be exacerbated by mood disturbance, medication and communication problems. In this review we advocate an individualized approach to managing cognitive impairment in progressive supranuclear palsy with the education of caregivers as a central component. Specific cognitive and behavioral treatments are complemented by treatment of mood disturbances, rationalizing medications and a patient-centered approach to communication. This aims to improve patients' quality of life, reduce carer burden and assist people with progressive supranuclear palsy in decisions about their life and health, including discussions of feeding and end-of-life issues.This work was funded by the Medical Research Council (G1100464 to T Rittman) the Wellcome Trust (103838 to JB Rowe), the NIHR-Cambridge Biomedical Research Centre and the Beverley Sackler fellowship scheme (T Rittman, ITS Coyle-Gilchrist)

    Room-Temperature Routes Toward the Creation of Zinc Oxide Films from Molecular Precursors

    Get PDF
    The fabrication of “flexible” electronics on plastic substrates with low melting points requires the development of thin-film deposition techniques that operate at low temperatures. This is easily achieved with vacuum- or solution-processed molecular or polymeric semiconductors, but oxide materials remain a significant challenge. Here, we show that zinc oxide (ZnO) can be prepared using only room-temperature processes, with the molecular thin-film precursor zinc phthalocyanine (ZnPc), followed by UV-light treatment in vacuum to elicit degradation of the organic components and transformation of the deposited film to the oxide material. The degradation mechanism was assessed by studying the influence of the atmosphere during the reaction: it was particularly sensitive to the oxygen pressure in the chamber and optimal degradation conditions were established as 3 mbar with 40% oxygen in nitrogen. The morphology of the film remained relatively unchanged during the reaction, but a detailed analysis of its composition using both scanning transmission electron microscopy and secondary ion mass spectrometry revealed that a 40 nm thick layer containing ZnO results from the 100 nm thick precursor after complete reaction. Our methodology represents a simple route for the fabrication of oxides and multilayer structures that can be easily integrated into current molecular thin-film growth setups, without the need for a high-temperature step

    Apathy and impulsivity in frontotemporal lobar degeneration syndromes

    Get PDF
    Apathy and impulsivity are common and disabling consequences of frontotemporal lobar degeneration. They cause substantial carer distress, but their aetiology remains elusive. There are critical limitations to previous studies in this area including (i) the assessment of either apathy or impulsivity alone, despite their frequent co-existence; (ii) the assessment of behavioural changes within single diagnostic groups; and (iii) the use of limited sets of tasks or questions that relate to just one aspect of these multifactorial constructs. We proposed an alternative, dimensional approach that spans behavioural and language variants of frontotemporal dementia, progressive supranuclear palsy and corticobasal syndrome. This accommodates the commonalities of apathy and impulsivity across disorders and reveals their cognitive and anatomical bases. The ability to measure the components of apathy and impulsivity and their associated neural correlates across diagnostic groups would provide better novel targets for pharmacological manipulations, and facilitate new treatment strategies and strengthen translational models. We therefore sought to determine the neurocognitive components of apathy and impulsivity in frontotemporal lobar degeneration syndromes. The frequency and characteristics of apathy and impulsivity were determined by neuropsychological and behavioural assessments in 149 patients and 50 controls from the PIck’s disease and Progressive supranuclear palsy Prevalence and INcidence study (PiPPIN). We derived dimensions of apathy and impulsivity using principal component analysis and employed these in volumetric analyses of grey and white matter in a subset of 70 patients (progressive supranuclear palsy, n = 22; corticobasal syndrome, n = 13; behavioural variant, n = 14; primary progressive aphasias, n = 21) and 27 control subjects. Apathy and impulsivity were present across diagnostic groups, despite being criteria for behavioural variant frontotemporal dementia alone. Measures of apathy and impulsivity frequently loaded onto the same components reflecting their overlapping relationship. However, measures from objective tasks, patient-rated questionnaires and carer-rated questionnaires loaded onto separate components and revealed distinct neurobiology. Corticospinal tracts correlated with patients’ self-ratings. In contrast, carer ratings correlated with atrophy in established networks for goal-directed behaviour, social cognition, motor control and vegetative functions, including frontostriatal circuits, orbital and temporal polar cortex, and the brainstem. Components reflecting response inhibition deficits correlated with focal frontal cortical atrophy. The dimensional approach to complex behavioural changes arising from frontotemporal lobar degeneration provides new insights into apathy and impulsivity, and the need for a joint therapeutic strategy against them. The separation of objective tests from subjective questionnaires, and patient from carer ratings, has important implications for clinical trial design

    A database of microRNA expression patterns in Xenopus laevis

    Get PDF
    MicroRNAs (miRNAs) are short, non-coding RNAs around 22 nucleotides long. They inhibit gene expression either by translational repression or by causing the degradation of the mRNAs they bind to. Many are highly conserved amongst diverse organisms and have restricted spatio-temporal expression patterns during embryonic development where they are thought to be involved in generating accuracy of developmental timing and in supporting cell fate decisions and tissue identity. We determined the expression patterns of 180 miRNAs in Xenopus laevis embryos using LNA oligonucleotides. In addition we carried out small RNA-seq on different stages of early Xenopus development, identified 44 miRNAs belonging to 29 new families and characterized the expression of 5 of these. Our analyses identified miRNA expression in many organs of the developing embryo. In particular a large number were expressed in neural tissue and in the somites. Surprisingly none of the miRNAs we have looked at show expression in the heart. Our results have been made freely available as a resource in both XenMARK and Xenbase

    SDF1-Induced Antagonism of Axonal Repulsion Requires Multiple G-Protein Coupled Signaling Components That Work in Parallel

    Get PDF
    SDF1 reduces the responsiveness of axonal growth cones to repellent guidance cues in a pertussis-toxin-sensitive, cAMP-dependent manner. Here, we show that SDF1's antirepellent effect can be blocked in embryonic chick dorsal root ganglia (DRGs) by expression of peptides or proteins inhibiting either Gαi, Gαq, or Gβγ. SDF1 antirepellent activity is also blocked by pharmacological inhibition of PLC, a common effector protein for Gαq. We also show that SDF1 antirepellent activity can be mimicked by overexpression of constitutively active Gαi, Gαq, or Gαs. These results suggest a model in which multiple G protein components cooperate to produce the cAMP levels required for SDF1 antirepellent activity

    Differential Trends in the Codon Usage Patterns in HIV-1 Genes

    Get PDF
    Host-pathogen interactions underlie one of the most complex evolutionary phenomena resulting in continual adaptive genetic changes, where pathogens exploit the host's molecular resources for growth and survival, while hosts try to eliminate the pathogen. Deciphering the molecular basis of host–pathogen interactions is useful in understanding the factors governing pathogen evolution and disease propagation. In host-pathogen context, a balance between mutation, selection, and genetic drift is known to maintain codon bias in both organisms. Studies revealing determinants of the bias and its dynamics are central to the understanding of host-pathogen evolution. We considered the Human Immunodeficiency Virus (HIV) type 1 and its human host to search for evolutionary signatures in the viral genome. Positive selection is known to dominate intra-host evolution of HIV-1, whereas high genetic variability underlies the belief that neutral processes drive inter-host differences. In this study, we analyze the codon usage patterns of HIV-1 genomes across all subtypes and clades sequenced over a period of 23 years. We show presence of unique temporal correlations in the codon bias of three HIV-1 genes illustrating differential adaptation of the HIV-1 genes towards the host preferred codons. Our results point towards gene-specific translational selection to be an important force driving the evolution of HIV-1 at the population level

    GPIIb/IIIa Receptor Antagonism Using Small Molecules Provides no Additive Long-Term Protection after Percutaneous Coronary Intervention as Compared to Clopidogrel Plus Aspirin

    Get PDF
    Background: There is some controversy as to whether tirofiban or eptifibatide, two small anti-aggregating drugs (AAD), may reduce the incidence of composite ischemic events within one year in patients undergoing percutaneous coronary intervention (PCI) in the real clinical world. Methods: We compared consecutive patients on oral double AAD (with clopidogrel and aspirin) who underwent PCI (n=207) and patients who were on single AAD and received a second AAD, just prior to PCI, and either high-dose tirofiban or double-bolus eptifibatide (double AAD plus small molecules group, n=666). The primary end point (incidence of composite ischemic events within one year) included death, acute myocardial infarction, unstable angina, stent thrombosis or repeat PCI or coronary bypass surgery (related to the target vessel PCI failure) and was modelled by Cox's regression. Results: There were 89 composite ischemic events: 24 (11.6%) in double AAD alone and 65 (9.8%) in double AAD plus small molecules groups (log-rank test: p=0.36). Incidences by type of ischemic events were similar between the 2 groups. Based on 21 potential covariates fitted simultaneously, adjusted hazard ratios (HR and 95% confidence intervals) showed that age (HR 1.03, 1.01-1.06, p=0.01), diabetes (HR 1.68, 1.01-2.79, p=0.05) and intra aortic balloon pump (HR 5.12, 2.36-11.10, p=0.0001) were significant risk factors whereas thrombolysis by tenecteplase (HR 0.35, 0.13-0.98, p=0.05) and having had hypertension or anti-hypertensive treatment (HR 0.58, 0.36-0.93, p=0.03) were significant protectors for events. Whether small molecules were present provided a non significant additional benefit as compared to double AAD alone (HR 0.83, 0.51-1.36, p=0.46). Pre-PCI CK-MB were not useful to predict events (HR 1.01, 0.99-1.01, p=0.17). Conclusions: In clinical world patients undergoing PCI (rescue plus primary <13%) while on double AAD, based on clopidogrel plus aspirin, small molecules (tirofiban or eptifibatide) provided no additive long-term protection against the occurrence of composite ischemic events whereas thrombolysis by tenecteplase did. © Schiariti et al

    Antigenic Diversity, Transmission Mechanisms, and the Evolution of Pathogens

    Get PDF
    Pathogens have evolved diverse strategies to maximize their transmission fitness. Here we investigate these strategies for directly transmitted pathogens using mathematical models of disease pathogenesis and transmission, modeling fitness as a function of within- and between-host pathogen dynamics. The within-host model includes realistic constraints on pathogen replication via resource depletion and cross-immunity between pathogen strains. We find three distinct types of infection emerge as maxima in the fitness landscape, each characterized by particular within-host dynamics, host population contact network structure, and transmission mode. These three infection types are associated with distinct non-overlapping ranges of levels of antigenic diversity, and well-defined patterns of within-host dynamics and between-host transmissibility. Fitness, quantified by the basic reproduction number, also falls within distinct ranges for each infection type. Every type is optimal for certain contact structures over a range of contact rates. Sexually transmitted infections and childhood diseases are identified as exemplar types for low and high contact rates, respectively. This work generates a plausible mechanistic hypothesis for the observed tradeoff between pathogen transmissibility and antigenic diversity, and shows how different classes of pathogens arise evolutionarily as fitness optima for different contact network structures and host contact rates
    • …
    corecore