5 research outputs found

    Collective Phase-like Mode and the Role of Lattice Distortions at TN~TC in RMn2O5 (R= Pr, Sm, Gd, Tb, Bi)

    Full text link
    We report on electronic collective excitations in RMn2O5 (R= Pr, Sm, Gd, Tb) showing condensation starting at and below TN\simTC\sim40-50 K. Its origin is understood as partial delocalized eg electron orbitals in the Jahn-Teller distortion of the pyramids dimmer with strong hybridized Mn3+-O bonds. Our local probes, Raman, infrared, and X-ray absorption, back the conclusion by which there is no structural phase transition at TN\simTC. Ferroelectricity is magnetically assisted by electron localization triggering lattice polarizability by unscreening. We have also found phonon hardening as the rare earth is sequentially replaced. This is understood as consequence of lanthanide contraction. It is suggested that partially f-electron screened Rare Earth nuclei might be introducing a perturbation to eg electrons prone to delocalize as the superexchange interaction takes place.Comment: Journal of Physics Cond. Matter April 12, 2012. In pres

    High Temperature Emissivity, Reflectivity, and X-ray absorption of BiFeO3

    Get PDF
    We report on the lattice evolution of BiFeO3 as function of temperature using far infrared emissivity, reflectivity, and X-ray absorption local structure. A power law fit to the lowest frequency soft phonon in the magnetic ordered phase yields an exponent {\beta}=0.25 as for a tricritical point. At about 200 K below TN~640 K it ceases softening as consequence of BiFeO3 metastability. We identified this temperature as corresponding to a crossover transition to an order-disorder regime. Above ~700 K strong band overlapping, merging, and smearing of modes are consequence of thermal fluctuations and chemical disorder. Vibrational modes show band splits in the ferroelectric phase as emerging from triple degenerated species as from a paraelectric cubic phase above TC~1090 K. Temperature dependent X-ray absorption near edge structure (XANES) at the Fe K-edge shows that lower temperature Fe3+ turns into Fe2+. While this matches the FeO w\"ustite XANES profile, the Bi LIII-edge downshift suggests a high temperature very complex bond configuration at the distorted A perovskite site. Overall, our local structural measurements reveal high temperature defect-induced irreversible lattice changes, below, and above the ferroelectric transition, in an environment lacking of long-range coherence. We did not find an insulator to metal transition prior to melting.Comment: Accepted for publicatio

    Pressure and chemical substitution effects in the local atomic structure of BaFe2As2

    Get PDF
    The effects of K and Co substitutions and quasihydrostatic applied pressure (P ~0.01 Å) by both Co and K substitutions, without any observable increment in the corresponding Debye-Waller factor. Also, this bond is shown to be compressible [κ = 3.3(3) × 10−3 GPa−1]. The observed contractions of As-Fe bond under pressure and chemical substitutions are likely related with a reduction of the local Fe magnetic moments, and should be an important tuning parameter in the phase diagrams of the Fe-based superconductors

    Pressure and chemical substitution effects in the local atomic structure of BaFe2As2

    No full text
    The effects of K and Co substitutions and quasihydrostatic applied pressure (P ~0.01 Å) by both Co and K substitutions, without any observable increment in the corresponding Debye-Waller factor. Also, this bond is shown to be compressible [κ = 3.3(3) × 10−3 GPa−1]. The observed contractions of As-Fe bond under pressure and chemical substitutions are likely related with a reduction of the local Fe magnetic moments, and should be an important tuning parameter in the phase diagrams of the Fe-based superconductors
    corecore