27,065 research outputs found

    Theory and Simulation of the diffusion of kinks on dislocations in bcc metals

    Full text link
    Isolated kinks on thermally fluctuating (1/2) screw, edge and (1/2) edge dislocations in bcc iron are simulated under zero stress conditions using molecular dynamics (MD). Kinks are seen to perform stochastic motion in a potential landscape that depends on the dislocation character and geometry, and their motion provides fresh insight into the coupling of dislocations to a heat bath. The kink formation energy, migration barrier and friction parameter are deduced from the simulations. A discrete Frenkel-Kontorova-Langevin (FKL) model is able to reproduce the coarse grained data from MD at a fraction of the computational cost, without assuming an a priori temperature dependence beyond the fluctuation-dissipation theorem. Analytic results reveal that discreteness effects play an essential r\^ole in thermally activated dislocation glide, revealing the existence of a crucial intermediate length scale between molecular and dislocation dynamics. The model is used to investigate dislocation motion under the vanishingly small stress levels found in the evolution of dislocation microstructures in irradiated materials

    Statistically Preserved Structures and Anomalous Scaling in Turbulent Active Scalar Advection

    Full text link
    The anomalous scaling of correlation functions in the turbulent statistics of active scalars (like temperature in turbulent convection) is understood in terms of an auxiliary passive scalar which is advected by the same turbulent velocity field. While the odd-order correlation functions of the active and passive fields differ, we propose that the even-order correlation functions are the same to leading order (up to a trivial multiplicative factor). The leading correlation functions are statistically preserved structures of the passive scalar decaying problem, and therefore universality of the scaling exponents of the even-order correlations of the active scalar is demonstrated.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Quenching of pairing gap at finite temperature in 184W

    Full text link
    We extract pairing gap in 184^{184}W at finite temperature for the first time from the experimental level densities of 183^{183}W, 184^{184}W, and 185^{185}W using "thermal" odd-even mass difference. We found the quenching of pairing gap near the critical temperature Tc=0.47T_c = 0.47 MeV in the BCS calculations. It is shown that the monopole pairing model with a deformed Woods-Saxon potential explains the reduction of the pairing correlation using the partition function with the number parity projection in the static path approximation plus random-phase approximation.Comment: 5 pages, 4 figures, accepted for publication in PR

    Test of nuclear level density inputs for Hauser-Feshbach model calculations

    Full text link
    The energy spectra of neutrons, protons, and alpha-particles have been measured from the d+59Co and 3He+58Fe reactions leading to the same compound nucleus, 61$Ni. The experimental cross sections have been compared to Hauser-Feshbach model calculations using different input level density models. None of them have been found to agree with experiment. It manifests the serious problem with available level density parameterizations especially those based on neutron resonance spacings and density of discrete levels. New level densities and corresponding Fermi-gas parameters have been obtained for reaction product nuclei such as 60Ni,60Co, and 57Fe

    Solving the electrical control of magnetic coercive field paradox

    Get PDF
    The ability to tune magnetic properties of solids via electric voltages instead of external magnetic fields is a physics curiosity of great scientific and technological importance. Today, there is strong published experimental evidence of electrical control of magnetic coercive fields in composite multiferroic solids. Unfortunately, the literature indicates highly contradictory results. In some studies, an applied voltage increases the magnetic coercive field and in other studies the applied voltage decreases the coercive field of composite multiferroics. Here, we provide an elegant explanation to this paradox and we demonstrate why all reported results are in fact correct. It is shown that for a given polarity of the applied voltage, the magnetic coercive field depends on the sign of two tensor components of the multiferroic solid: magnetostrictive and piezoelectric coefficient. For a negative applied voltage, the magnetic coercive field decreases when the two material parameters have the same sign and increases when they have opposite signs, respectively. The effect of the material parameters is reversed when the same multiferroic solid is subjected to a positive applied voltage

    Variations in solar wind fractionation as seen by ACE/SWICS over a solar cycle and the implications for Genesis Mission results

    Get PDF
    We use ACE/SWICS elemental composition data to compare the variations in solar wind fractionation as measured by SWICS during the last solar maximum (1999-2001), the solar minimum (2006-2009) and the period in which the Genesis spacecraft was collecting solar wind (late 2001 - early 2004). We differentiate our analysis in terms of solar wind regimes (i.e. originating from interstream or coronal hole flows, or coronal mass ejecta). Abundances are normalized to the low-FIP ion magnesium to uncover correlations that are not apparent when normalizing to high-FIP ions. We find that relative to magnesium, the other low-FIP elements are measurably fractionated, but the degree of fractionation does not vary significantly over the solar cycle. For the high-FIP ions, variation in fractionation over the solar cycle is significant: greatest for Ne/Mg and C/Mg, less so for O/Mg, and the least for He/Mg. When abundance ratios are examined as a function of solar wind speed, we find a strong correlation, with the remarkable observation that the degree of fractionation follows a mass-dependent trend. We discuss the implications for correcting the Genesis sample return results to photospheric abundances.Comment: Accepted for publication in Ap

    “An ethnographic seduction”: how qualitative research and Agent-based models can benefit each other

    Get PDF
    We provide a general analytical framework for empirically informed agent-based simulations. This methodology provides present-day agent-based models with a sound and proper insight as to the behavior of social agents — an insight that statistical data often fall short of providing at least at a micro level and for hidden and sensitive populations. In the other direction, simulations can provide qualitative researchers in sociology, anthropology and other fields with valuable tools for: (a) testing the consistency and pushing the boundaries, of specific theoretical frameworks; (b) replicating and generalizing results; (c) providing a platform for cross-disciplinary validation of results

    Quantum Multibaker Maps: Extreme Quantum Regime

    Full text link
    We introduce a family of models for quantum mechanical, one-dimensional random walks, called quantum multibaker maps (QMB). These are Weyl quantizations of the classical multibaker models previously considered by Gaspard, Tasaki and others. Depending on the properties of the phases parametrizing the quantization, we consider only two classes of the QMB maps: uniform and random. Uniform QMB maps are characterized by phases which are the same in every unit cell of the multibaker chain. Random QMB maps have phases that vary randomly from unit cell to unit cell. The eigenstates in the former case are extended while in the latter they are localized. In the uniform case and for large â„Ź\hbar, analytic solutions can be obtained for the time dependent quantum states for periodic chains and for open chains with absorbing boundary conditions. Steady state solutions and the properties of the relaxation to a steady state for a uniform QMB chain in contact with ``particle'' reservoirs can also be described analytically. The analytical results are consistent with, and confirmed by, results obtained from numerical methods. We report here results for the deep quantum regime (large â„Ź\hbar) of the uniform QMB, as well as some results for the random QMB. We leave the moderate and small â„Ź\hbar results as well as further consideration of the other versions of the QMB for further publications.Comment: 17 pages, referee's and editor's comments addresse

    Fractal dimension of transport coefficients in a deterministic dynamical system

    Full text link
    In many low-dimensional dynamical systems transport coefficients are very irregular, perhaps even fractal functions of control parameters. To analyse this phenomenon we study a dynamical system defined by a piece-wise linear map and investigate the dependence of transport coefficients on the slope of the map. We present analytical arguments, supported by numerical calculations, showing that both the Minkowski-Bouligand and Hausdorff fractal dimension of the graphs of these functions is 1 with a logarithmic correction, and find that the exponent Îł\gamma controlling this correction is bounded from above by 1 or 2, depending on some detailed properties of the system. Using numerical techniques we show local self-similarity of the graphs. The local self-similarity scaling transformations turn out to depend (irregularly) on the values of the system control parameters.Comment: 17 pages, 6 figures; ver.2: 18 pages, 7 figures (added section 5.2, corrected typos, etc.
    • …
    corecore