29,807 research outputs found

    Trait mindfulness at baseline predicts increases in telomerase activity over time

    Get PDF
    Introduction Preliminary investigations of cross-sectional samples have linked trait mindfulness with measures related to the hypothalamic–pituitary–adrenal (HPA)-mediated stress response and to the inflammatory system, suggesting that this is one potential pathway linking mindfulness based interventions and health. However, no previous studies explored the association between the trait mindfulness construct and markers of cellular ageing. Methods In the current study we examined in a sample of healthy mothers (n = 92) of a child with Autism Spectrum Disorder (i.e. women showing high levels of chronic psychological stress) the prospective associations between a multidimensional scale of trait mindfulness, the Five Facet Mindfulness Questionnaire (FFMQ), and telomerase activity (TA), a marker of cellular ageing and telomere homeostasis. Participants’ trait mindfulness and TA were assessed at baseline as well as 9 and 18 month follow-up. Results Analysis showed that higher levels of baseline mindfulness on FFMQ observation and describe subscales were related to increase in TA from baseline to 9 month (r = 0.27, P = 0.03 and r = 0.24, P = .04, respectively). Additionally, the FFMQ Describe subscale was related to increase in TA from baseline to 18 month (r = .30, P = .02). Results are reported following covariate adjustment of age, BMI, ethnicity, and education. Discussion Our results showed that higher levels of baseline mindfulness are associated with higher increases in TA after 9 months and 18 months, with increased TA reportedly being associated with decreased oxidative damage, increased telomere length and overall more functional cellular physiology. These findings support a role of mindfulness-related interventions to increase general and mental health

    Statistically Preserved Structures and Anomalous Scaling in Turbulent Active Scalar Advection

    Full text link
    The anomalous scaling of correlation functions in the turbulent statistics of active scalars (like temperature in turbulent convection) is understood in terms of an auxiliary passive scalar which is advected by the same turbulent velocity field. While the odd-order correlation functions of the active and passive fields differ, we propose that the even-order correlation functions are the same to leading order (up to a trivial multiplicative factor). The leading correlation functions are statistically preserved structures of the passive scalar decaying problem, and therefore universality of the scaling exponents of the even-order correlations of the active scalar is demonstrated.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Specialization of the rostral prefrontal cortex for distinct analogy processes

    Get PDF
    Analogical reasoning is central to learning and abstract thinking. It involves using a more familiar situation (source) to make inferences about a less familiar situation (target). According to the predominant cognitive models, analogical reasoning includes 1) generation of structured mental representations and 2) mapping based on structural similarities between them. This study used functional magnetic resonance imaging to specify the role of rostral prefrontal cortex (PFC) in these distinct processes. An experimental paradigm was designed that enabled differentiation between these processes, by temporal separation of the presentation of the source and the target. Within rostral PFC, a lateral subregion was activated by analogy task both during study of the source (before the source could be compared with a target) and when the target appeared. This may suggest that this subregion supports fundamental analogy processes such as generating structured representations of stimuli but is not specific to one particular processing stage. By contrast, a dorsomedial subregion of rostral PFC showed an interaction between task (analogy vs. control) and period (more activated when the target appeared). We propose that this region is involved in comparison or mapping processes. These results add to the growing evidence for functional differentiation between rostral PFC subregions

    Measurement of the 6S-7S transition polarizablility in atomic cesium and an improved test of the standard model

    Full text link
    The ratio of the off-diagonal hyperfine amplitude to the tensor transition polarizability (Mhf/beta) for the 6S-7S transition in cesium has been measured. The value of beta=27.024(43)(expt)(67)(theory)a_0^3 is then obtained using an accurate semi-empirical value of Mhf. This is combined with a previous measurement of parity nonconservation in atomic cesium and previous atomic structure calculations to determine the value of the weak charge. The uncertainties in the atomic structure calculations are updated (and reduced) in light of new experimental tests. The result Q_W=-72.06(28)(expt) (34)(theory) differs from the prediction of the standard model of elementary particle physics by 2.5 sigma.Comment: 12 pages, 1 figur

    Grid-enabled SIMAP utility: Motivation, integration technology and performance results

    Get PDF
    A biological system comprises large numbers of functionally diverse and frequently multifunctional sets of elements that interact selectively and nonlinearly to produce coherent behaviours. Such a system can be anything from an intracellular biological process (such as a biochemical reaction cycle, gene regulatory network or signal transduction pathway) to a cell, tissue, entire organism, or even an ecological web. Biochemical systems are responsible for processing environmental signals, inducing the appropriate cellular responses and sequence of internal events. However, such systems are not fully or even poorly understood. Systems biology is a scientific field that is concerned with the systematic study of biological and biochemical systems in terms of complex interactions rather than their individual molecular components. At the core of systems biology is computational modelling (also called mathematical modelling), which is the process of constructing and simulating an abstract model of a biological system for subsequent analysis. This methodology can be used to test hypotheses via insilico experiments, providing predictions that can be tested by in-vitro and in-vivo studies. For example, the ERbB1-4 receptor tyrosine kinases (RTKs) and the signalling pathways they activate, govern most core cellular processes such as cell division, motility and survival (Citri and Yarden, 2006) and are strongly linked to cancer when they malfunction due to mutations etc. An ODE (ordinary differential equation)-based mass action ErbB model has been constructed and analysed by Chen et al. (2009) in order to depict what roles of each protein plays and ascertain to how sets of proteins coordinate with each other to perform distinct physiological functions. The model comprises 499 species (molecules), 201 parameters and 828 reactions. These in silico experiments can often be computationally very expensive, e.g. when multiple biochemical factors are being considered or a variety of complex networks are being simulated simultaneously. Due to the size and complexity of the models and the requirement to perform comprehensive experiments it is often necessary to use high-performance computing (HPC) to keep the experimental time within tractable bounds. Based on this as part of an EC funded cancer research project, we have developed the SIMAP Utility that allows the SImulation modeling of the MAP kinase pathway (http://www.simap-project.org). In this paper we present experiences with Grid-enabling SIMAP using Condor

    Gilbert damping and spin Coulomb drag in a magnetized electron liquid with spin-orbit interaction

    Get PDF
    We present a microscopic calculation of the Gilbert damping constant for the magnetization of a two-dimensional spin-polarized electron liquid in the presence of intrinsic spin-orbit interaction. First we show that the Gilbert constant can be expressed in terms of the auto-correlation function of the spin-orbit induced torque. Then we specialize to the case of the Rashba spin-orbit interaction and we show that the Gilbert constant in this model is related to the spin-channel conductivity. This allows us to study the Gilbert damping constant in different physical regimes, characterized by different orderings of the relevant energy scales -- spin-orbit coupling, Zeeman coupling, momentum relaxation rate, spin-momentum relaxation rate, spin precession frequency -- and to discuss its behavior in various limits. Particular attention is paid to electron-electron interaction effects,which enter the spin conductivity and hence the Gilbert damping constant via the spin Coulomb drag coefficient.Comment: 18 pages, 8 figure

    A Web/Grid Services Approach for Integration of Virtual Clinical & Research Environments

    No full text
    Clinicans have responsibilities for audit and research, often participating in projects with basic scientist colleagues. Our work in a regional teaching hospital setting involves collaboration with the medical school computer services and builds upon work developed in computer science department as part of the Collaborative Orthopaedic Research Environment (CORE) project[1]. This has established a pilot study for proof of concept work. Users are mapped to a personal profile implemented using XML and a service oriented architecture (SOA)[2,3]. This bridges the e-Health and e-Science domains, addressing some of the basic questions of security and uptake

    Level density of a Fermi gas and integer partitions: a Gumbel-like finite-size correction

    Full text link
    We investigate the many-body level density of gas of non-interacting fermions. We determine its behavior as a function of the temperature and the number of particles. As the temperature increases, and beyond the usual Sommerfeld expansion that describes the degenerate gas behavior, corrections due to a finite number of particles lead to Gumbel-like contributions. We discuss connections with the partition problem in number theory, extreme value statistics as well as differences with respect to the Bose gas.Comment: 5 pages, 1 figure, one figure added, accepted for publication in Phys. Rev.

    Monotonic Prefix Consistency in Distributed Systems

    Get PDF
    We study the issue of data consistency in distributed systems. Specifically, we consider a distributed system that replicates its data at multiple sites, which is prone to partitions, and which is assumed to be available (in the sense that queries are always eventually answered). In such a setting, strong consistency, where all replicas of the system apply synchronously every operation, is not possible to implement. However, many weaker consistency criteria that allow a greater number of behaviors than strong consistency, are implementable in available distributed systems. We focus on determining the strongest consistency criterion that can be implemented in a convergent and available distributed system that tolerates partitions. We focus on objects where the set of operations can be split into updates and queries. We show that no criterion stronger than Monotonic Prefix Consistency (MPC) can be implemented.Comment: Submitted pape
    corecore