167 research outputs found

    Fabrication of Atomically Precise Nanopores in Hexagonal Boron Nitride

    Get PDF
    We demonstrate the fabrication of individual nanopores in hexagonal boron nitride (hBN) with atomically precise control of the pore size. Previous methods of pore production in other 2D materials create pores of irregular geometry with imprecise diameters. By taking advantage of the preferential growth of boron vacancies in hBN under electron beam irradiation, we are able to observe the pore growth via transmission electron microscopy, and terminate the process when the pore has reached its desired size. Careful control of beam conditions allows us to nucleate and grow individual triangular and hexagonal pores with diameters ranging from subnanometer to 6nm over a large area of suspended hBN using a conventional TEM. These nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation. Furthermore, the chemical edge-groups along the hBN pores can be made entirely nitrogen terminated or faceted with boron-terminated edges, opening avenues for tailored functionalization and extending the applications of these hBN nanopores.Comment: 5 pages, 6 figure

    Blue-Light-Emitting Color Centers in High-Quality Hexagonal Boron Nitride

    Get PDF
    Light emitters in wide band gap semiconductors are of great fundamental interest and have potential as optically addressable qubits. Here we describe the discovery of a new color center in high-quality hexagonal boron nitride (h-BN) with a sharp emission line at 435 nm. The emitters are activated and deactivated by electron beam irradiation and have spectral and temporal characteristics consistent with atomic color centers weakly coupled to lattice vibrations. The emitters are conspicuously absent from commercially available h-BN and are only present in ultra-high-quality h-BN grown using a high-pressure, high-temperature Ba-B-N flux/solvent, suggesting that these emitters originate from impurities or related defects specific to this unique synthetic route. Our results imply that the light emission is activated and deactivated by electron beam manipulation of the charge state of an impurity-defect complex

    Alternative Stacking Sequences in Hexagonal Boron Nitride

    Get PDF
    The relative orientation of successive sheets, i.e. the stacking sequence, in layered two-dimensional materials is central to the electronic, thermal, and mechanical properties of the material. Often different stacking sequences have comparable cohesive energy, leading to alternative stable crystal structures. Here we theoretically and experimentally explore different stacking sequences in the van der Waals bonded material hexagonal boron nitride (h-BN). We examine the total energy, electronic bandgap, and dielectric response tensor for five distinct high symmetry stacking sequences for both bulk and bilayer forms of h-BN. Two sequences, the generally assumed AA' sequence and the relatively unknown (for h-BN) AB (Bernal) sequence, are predicted to have comparably low energy. We present a scalable modified chemical vapor deposition method that produces large flakes of virtually pure AB stacked h-BN; this new material complements the generally available AA' stacked h-BN

    Electron Beam-Induced Nanopores in Bernal-Stacked Hexagonal Boron Nitride

    Get PDF
    Controlling the size and shape of nanopores in two-dimensional materials is a key challenge in applications such as DNA sequencing, sieving, and quantum emission in artificial atoms. We here investigate experimentally and theoretically triangular vacancies in (unconventional) Bernal-stacked AB-h-BN formed using a high-energy electron beam. Due to the geometric configuration of AB-h-BN, triangular pores in different layers are aligned, and their sizes are controlled by the duration of the electron irradiation. Interlayer covalent bonding at the vacancy edge is not favored, as opposed to what occurs in the more common AA'-stacked BN. A variety of monolayer, concentric and bilayer pores in bilayer AB-h-BN are observed in high-resolution transmission electron microscopy and characterized using ab initio simulations. Bilayer pores in AB-h-BN are commonly formed, and grow without breaking the bilayer character. Nanopores in AB-h-BN exhibit a wide range of electronic properties, ranging from half-metallic to non-magnetic and magnetic semiconducting. Therefore, because of the controllability of the pore size, the electronic structure is also highly controllable in these systems, and can potentially be tuned for particular applications

    Molecular diet analysis of two african free-tailed bats (molossidae) using high throughput sequencing.

    Get PDF
    Given the diversity of prey consumed by insectivorous bats, it is difficult to discern the composition of their diet using morphological or conventional PCR-based analyses of their faeces. We demonstrate the use of a powerful alternate tool, the use of the Roche FLX sequencing platform to deep-sequence uniquely 5' tagged insect-generic barcode cytochrome c oxidase I (COI) fragments, that were PCR amplified from faecal pellets of two free-tailed bat species Chaerephon pumilus and Mops condylurus (family: Molossidae). Although the analyses were challenged by the paucity of southern African insect COI sequences in the GenBank and BOLD databases, similarity to existing collections allowed the preliminary identification of 25 prey families from six orders of insects within the diet of C. pumilus, and 24 families from seven orders within the diet of M. condylurus. Insects identified to families within the orders Lepidoptera and Diptera were widely present among the faecal samples analysed. The two families that were observed most frequently were Noctuidae and Nymphalidae (Lepidoptera). Species-level analysis of the data was accomplished using novel bioinformatics techniques for the identification of molecular operational taxonomic units (MOTU). Based on these analyses, our data provide little evidence of resource partitioning between sympatric M. condylurus and C. pumilus in the Simunye region of Swaziland at the time of year when the samples were collected, although as more complete databases against which to compare the sequences are generated this may have to be re-evaluated.This study was supported by Bat Conservation International, Etatsraad Georg Bestle og Hustrus Mindelegat and the Oticon Fonden (KB and CN), the Danish Council for Independent Research Natural Sciences ‘Skou’ award (MTPG), and a Natural Sciences and Engineering Research Council of Canada post-doctoral fellowship (ELC). These funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This study was also supported by the Royal Swaziland Sugar Corporation, who provided field assistance and therefore had a role in data collection

    What Does Brain Response to Neutral Faces Tell Us about Major Depression? Evidence from Machine Learning and fMRI

    Get PDF
    Introduction: A considerable number of previous studies have shown abnormalities in the processing of emotional faces in major depression. Fewer studies, however, have focused specifically on abnormal processing of neutral faces despite evidence that depressed patients are slow and less accurate at recognizing neutral expressions in comparison with healthy controls. The current study aimed to investigate whether this misclassification described behaviourally for neutral faces also occurred when classifying patterns of brain activation to neutral faces for these patients. Methods: Two independent depressed samples: (1) Nineteen medication-free patients with depression and 19 healthy volunteers and (2) Eighteen depressed individuals and 18 age and gender-ratio-matched healthy volunteers viewed emotional faces (sad/neutral; happy/neutral) during an fMRI experiment. We used a new pattern recognition framework: first, we trained the classifier to discriminate between two brain states (e.g. viewing happy faces vs. viewing neutral faces) using data only from healthy controls (HC). Second, we tested the classifier using patterns of brain activation of a patient and a healthy control for the same stimuli. Finally, we tested if the classifier's predictions (predictive probabilities) for emotional and neutral face classification were different for healthy controls and depressed patients. Results: Predictive probabilities to patterns of brain activation to neutral faces in both groups of patients were significantly lower in comparison to the healthy controls. This difference was specific to neutral faces. There were no significant differences in predictive probabilities to patterns of brain activation to sad faces (sample 1) and happy faces (samples 2) between depressed patients and healthy controls. Conclusions: Our results suggest that the pattern of brain activation to neutral faces in depressed patients is not consistent with the pattern observed in healthy controls subject to the same stimuli. This difference in brain activation might underlie the behavioural misinterpretation of the neutral faces content by the depressed patients. © 2013 Oliveira et al

    Red hot frogs:Identifying the Australian frogs most at risk of extinction

    Get PDF
    More than a third of the world’s amphibian species are listed as Threatened or Extinct, with a recent assessment identifying 45 Australian frogs (18.4% of the currently recognised species) as ‘Threatened’ based on IUCN criteria. We applied structured expert elicitation to 26 frogs assessed as Critically Endangered and Endangered to estimate their probability of extinction by 2040. We also investigated whether participant experience (measured as a self-assigned categorical score, i.e. ‘expert’ or ‘non-expert’) influenced the estimates. Collation and analysis of participant opinion indicated that eight species are at high risk (>50% chance) of becoming extinct by 2040, with the disease chytridiomycosis identified as the primary threat. A further five species are at moderate–high risk (30–50% chance), primarily due to climate change. Fourteen of the 26 frog species are endemic to Queensland, with many species restricted to small geographic ranges that are susceptible to stochastic events (e.g. a severe heatwave or a large bushfire). Experts were more likely to rate extinction probability higher for poorly known species (those with <10 experts), while non-experts were more likely to rate extinction probability higher for better-known species. However, scores converged following discussion, indicating that there was greater consensus in the estimates of extinction probability. Increased resourcing and management intervention are urgently needed to avert future extinctions of Australia’s frogs. Key priorities include developing and supporting captive management and establishing or extending in-situ population refuges to alleviate the impacts of disease and climate change

    A Role for Drosophila dFoxO and dFoxO 5′UTR Internal Ribosomal Entry Sites during Fasting

    Get PDF
    One way animals may cope with nutrient deprivation is to broadly repress translation by inhibiting 5′-cap initiation. However, under these conditions specific proteins remain essential to survival during fasting. Such peptides may be translated through initiation at 5′UTR Internal Ribosome Entry Sites (IRES). Here we show that the Drosophila melanogaster Forkhead box type O (dFoxO) transcription factor is required for adult survival during fasting, and that the 5′UTR of dfoxO has the ability to initiate IRES-mediated translation in cell culture. Previous work has shown that insulin negatively regulates dFoxO through AKT-mediated phosphorylation while dFoxO itself induces transcription of the insulin receptor dInR, which also harbors IRES. Here we report that IRES-mediated translation of both dFoxO and dInR is activated in fasted Drosophila S2 cells at a time when cap-dependent translation is reduced. IRES mediated translation of dFoxO and dInR may be essential to ensure function and sensitivity of the insulin signaling pathway during fasting
    • …
    corecore