17,686 research outputs found
Flexible Authentication in Vehicular Ad hoc Networks
A Vehicular Ad-Hoc Network (VANET) is a form of Mobile ad-hoc network, to
provide communications among nearby vehicles and between vehicles and nearby
fixed roadside equipment. The key operation in VANETs is the broadcast of
messages. Consequently, the vehicles need to make sure that the information has
been sent by an authentic node in the network. VANETs present unique challenges
such as high node mobility, real-time constraints, scalability, gradual
deployment and privacy. No existent technique addresses all these requirements.
In particular, both inter-vehicle and vehicle-to-roadside wireless
communications present different characteristics that should be taken into
account when defining node authentication services. That is exactly what is
done in this paper, where the features of inter-vehicle and vehicle-to-roadside
communications are analyzed to propose differentiated services for node
authentication, according to privacy and efficiency needs
Comparison of Four Space Propulsion Methods for Reducing Transfer Times of Manned Mars Mission
We assess the possibility of reducing the travel time of a manned mission to
Mars by examining four different propulsion methods, and keeping the mass at
departure under 2,500 tonnes, for a fixed architecture. We evaluated
representative systems of three different state of the art technologies
(chemical, nuclear thermal, and electric), and one advance technology, the
"Pure Electro-Magnetic Thrust" (PEMT) concept (proposed by Rubbia). A mission
architecture mostly based on the Design Reference Architecture 5.0 is assumed
in order to estimate the mass budget, that influences the performance of the
propulsion system. Pareto curves of the duration of the mission and time of
flight versus mass of mission are drawn. We conclude that the ion engine
technology, combined with the classical chemical engine, yields the shortest
mission times for this architecture with the lowest mass, and that chemical
propulsion alone is the best to minimise travel time. The results obtained
using the PEMT suggest that it could be a more suitable solution for farther
destinations than Mars.Comment: Change in title, abstract and presentation so to clarify the main
results. 14 pages, 7 figures and 2 table
Explosion of white dwarfs harboring hybrid CONe cores
Recently, it has been found that off-centre carbon burning in a subset of
intermediate-mass stars does not propagate all the way to the center, resulting
in a class of hybrid CONe cores. Here, we consider the possibility that stars
hosting these hybrid CONe cores might belong to a close binary system and,
eventually, become white dwarfs accreting from a non-degenerate companion at
rates leading to a supernova explosion. We have computed the hydrodynamical
phase of the explosion of Chandrasekhar-mass white dwarfs harboring hybrid
cores, assuming that the explosion starts at the center, either as a detonation
(as may be expected in some degenerate merging scenarios) or as a deflagration
(that afterwards transitions into a delayed detonation). We assume these hybrid
cores are made of a central CO volume, of mass M(CO), surrounded by an ONe
shell. We show that, in case of a pure detonation, a medium-sized CO-rich
region, M(CO)<0.4 Msun, results in the ejection of a small fraction of the
mantle while leaving a massive bound remnant. Part of this remnant is made of
the products of the detonation, Fe-group nuclei, but they are buried in its
inner regions, unless convection is activated during the ensuing cooling and
shrinking phase of the remnant. In contrast, and somehow paradoxically, delayed
detonations do not leave remnants but for the minimum M(CO) we have explored,
M(CO)=0.2 Msun, and even in this case the remnant is as small as 0.13 Msun. The
ejecta produced by these delayed detonations are characterized by slightly
smaller masses of 56Ni and substantially smaller kinetic energies than obtained
for a delayed detonation of a 'normal' CO white dwarf. The optical emission
expected from these explosions would hardly match the observational properties
of typical Type Ia supernovae, although they make interesting candidates for
the subluminous class of SN2002cx-like or SNIax.Comment: Accepted for Astronomy and Astrophysics, 11 pages, 4 figure
A Rational Approach to Cryptographic Protocols
This work initiates an analysis of several cryptographic protocols from a
rational point of view using a game-theoretical approach, which allows us to
represent not only the protocols but also possible misbehaviours of parties.
Concretely, several concepts of two-person games and of two-party cryptographic
protocols are here combined in order to model the latters as the formers. One
of the main advantages of analysing a cryptographic protocol in the game-theory
setting is the possibility of describing improved and stronger cryptographic
solutions because possible adversarial behaviours may be taken into account
directly. With those tools, protocols can be studied in a malicious model in
order to find equilibrium conditions that make possible to protect honest
parties against all possible strategies of adversaries
Luminous Compact Blue Galaxies up to z~1 in the HST Ultra Deep Field: I. Small galaxies, or blue centers of massive disks?
We analyze 26 Luminous Compact Blue Galaxies (LCBGs) in the HST/ACS Ultra
Deep Field (UDF) at z ~ 0.2-1.3, to determine whether these are truly small
galaxies, or rather bright central starbursts within existing or forming large
disk galaxies. Surface brightness profiles from UDF images reach fainter than
rest-frame 26.5 B mag/arcsec^2 even for compact objects at z~1. Most LCBGs show
a smaller, brighter component that is likely star-forming, and an extended,
roughly exponential component with colors suggesting stellar ages >~ 100 Myr to
few Gyr. Scale lengths of the extended components are mostly >~ 2 kpc, >1.5-2
times smaller than those of nearby large disk galaxies like the Milky Way.
Larger, very low surface brightness disks can be excluded down to faint
rest-frame surface brightnesses (>~ 26 B mag/arcsec^2). However, 1 or 2 of the
LCBGs are large, disk-like galaxies that meet LCBG selection criteria due to a
bright central nucleus, possibly a forming bulge. These results indicate that
>~ 90% of high-z LCBGs are small galaxies that will evolve into small disk
galaxies, and low mass spheroidal or irregular galaxies in the local Universe,
assuming passive evolution and no significant disk growth. The data do not
reveal signs of disk formation around small, HII-galaxy-like LCBGs, and do not
suggest a simple inside-out growth scenario for larger LCBGs with a disk-like
morphology. Irregular blue emission in distant LCBGs is relatively extended,
suggesting that nebular emission lines from star-forming regions sample a major
fraction of an LCBG's velocity field.Comment: 11 pages, 2 figures, AASTeX; accepted for publication in
Astrophysical Journal Letter
Spin-Exchange Interaction in ZnO-based Quantum Wells
Wurtzitic ZnO/(Zn,Mg)O quantum wells grown along the (0001) direction permit
unprecedented tunability of the short-range spin exchange interaction. In the
context of large exciton binding energies and electron-hole exchange
interaction in ZnO, this tunability results from the competition between
quantum confinement and giant quantum confined Stark effect. By using
time-resolved photoluminescence we identify, for well widths under 3 nm, the
redistribution of oscillator strengths between the A and B excitonic
transitions, due to the enhancement of the exchange interaction. Conversely,
for wider wells, the redistribution is cancelled by the dominant effect of
internal electric fields, which dramatically reduce the exchange energy.Comment: 14 pages, 3 figure
- …