37 research outputs found
Preferential MGMT hypermethylation in SDH-deficient wild-type GIST
AIMS: Wild-type gastrointestinal stromal tumours (wtGIST) are frequently caused by inherited pathogenic variants, or somatic alterations in the succinate dehydrogenase subunit genes (SDHx). Succinate dehydrogenase is a key enzyme in the citric acid cycle. SDH deficiency caused by SDHx inactivation leads to an accumulation of succinate, which inhibits DNA and histone demethylase enzymes, resulting in global hypermethylation. Epigenetic silencing of the DNA repair gene MGMT has proven utility as a positive predictor of the therapeutic efficacy of the alklyating drug temozolomide (TMZ) in tumours such as glioblastoma multiforme. The aim of this study was to examine MGMT promoter methylation status in a large cohort of GIST. METHODS: MGMT methylation analysis was performed on 65 tumour samples including 47 wtGIST (33 SDH-deficient wtGIST and 11 SDH preserved wtGIST) and 21 tyrosine kinase (TK) mutant GIST. RESULTS: MGMT promoter methylation was detected in 8 cases of SDH-deficient (dSDH) GIST but in none of the 14 SDH preserved wild-type GIST or 21 TK mutant GIST samples analysed. Mean MGMT methylation was significantly higher (p 0.0449) and MGMT expression significantly lower (p<0.0001) in dSDH wtGIST compared with TK mutant or SDH preserved GIST. No correlation was identified between SDHx subunit gene mutations or SDHC epimutation status and mean MGMT methylation levels. CONCLUSION: MGMT promoter hypermethylation occurs exclusively in a subset of dSDH wtGIST. Data from this study support testing of tumour MGMT promoter methylation in patients with dSDH wtGIST to identify those patients who may benefit from most from TMZ therapy
Integrated Omics Profiling Reveals Novel Patterns of Epigenetic Programming in Cancer-Associated Myofibroblasts
There is increasing evidence that stromal myofibroblasts play a key role in tumour development, however the mechanisms by which they become reprogrammed to assist in cancer progression remain unclear. As cultured Cancer Associated Myofibroblasts (CAMs) retain an ability to enhance the proliferation and migration of cancer cells in vitro, it is possible that epigenetic reprogramming of CAMs within the tumour microenvironment may confer long-term pro-tumorigenic changes in gene expression. This study reports the first comparative multi-omics analysis of cancer-related changes in gene expression and DNA-methylation in primary myofibroblasts derived from gastric and oesophageal tumours. In addition, we identify novel CAM-specific DNA methylation signatures, which are not observed in patient-matched Adjacent Tissue-derived Myofibroblasts (ATMs), or corresponding Normal Tissue-derived Myofibroblasts (NTMs). Analysis of correlated changes in DNA methylation and gene expression show that different patterns of gene-specific DNA methylation have the potential to confer pro-tumourigenic changes in metabolism, cell signalling and differential responses to hypoxia. These molecular signatures provide new insights into potential mechanisms of stromal reprogramming in gastric and oesophageal cancer, while also providing a new resource to facilitate biomarker identification and future hypothesis driven studies into mechanisms of stromal reprogramming and tumour progression in solid tumours
Recommended from our members
The role of [68 Ga]Ga-DOTATATE PET/CT in wild-type KIT/PDGFRA gastrointestinal stromal tumours (GIST).
BACKGROUND: [68 Ga]Ga-DOTATATE PET/CT is now recognised as the most sensitive functional imaging modality for the diagnosis of well-differentiated neuroendocrine tumours (NET) and can inform treatment with peptide receptor radionuclide therapy with [177Lu]Lu-DOTATATE. However, somatostatin receptor (SSTR) expression is not unique to NET, and therefore, [68 Ga]Ga-DOTATATE PET/CT may have oncological application in other tumours. Molecular profiling of gastrointestinal stromal tumours that lack activating somatic mutations in KIT or PDGFRA or so-called 'wild-type' GIST (wtGIST) has demonstrated that wtGIST and NET have overlapping molecular features and has encouraged exploration of shared therapeutic targets, due to a lack of effective therapies currently available for metastatic wtGIST. AIMS: To investigate (i) the diagnostic role of [68 Ga]Ga-DOTATATE PET/CT; and, (ii) to investigate the potential of this imaging modality to guide treatment with [177Lu]Lu-DOTATATE in patients with wtGIST. METHODS: [68 Ga]Ga-DOTATATE PET/CT was performed on 11 patients with confirmed or metastatic wtGIST and one patient with a history of wtGIST and a mediastinal mass suspicious for metastatic wtGIST, who was subsequently diagnosed with a metachronous mediastinal paraganglioma. Tumour expression of somatostatin receptor subtype 2 (SSTR2) using immunohistochemistry was performed on 54 tumour samples including samples from 8/12 (66.6%) patients who took part in the imaging study and 46 tumour samples from individuals not included in the imaging study. RESULTS: [68 Ga]Ga-DOTATATE PET/CT imaging was negative, demonstrating that liver metastases had lower uptake than background liver for nine cases (9/12 cases, 75%) and heterogeneous uptake of somatostatin tracer was noted for two cases (16.6%) of wtGIST. However, [68 Ga]Ga-DOTATATE PET/CT demonstrated intense tracer uptake in a synchronous paraganglioma in one case and a metachronous paraganglioma in another case with wtGIST. CONCLUSIONS: Our data suggest that SSTR2 is not a diagnostic or therapeutic target in wtGIST. [68 Ga]Ga-DOTATATE PET/CT may have specific diagnostic utility in differentiating wtGIST from other primary tumours such as paraganglioma in patients with sporadic and hereditary forms of wtGIST
Translating In Vivo Metabolomic Analysis of Succinate Dehydrogenase–Deficient Tumors Into Clinical Utility
Purpose Mutations in the mitochondrial enzyme succinate dehydrogenase (SDH) subunit genes are associated with a wide spectrum of tumors, including pheochromocytomas and paragangliomas, GI stromal tumors, renal cell carcinomas, and pituitary adenomas. SDH-related tumorigenesis is believed to be secondary to accumulation of the oncometabolite succinate. Our aim was to investigate the potential clinical applications of proton-1 magnetic resonance spectroscopy (1H-MRS) in a range of suspected SDH-related tumors. Patients and Methods Fifteen patients were recruited to this study. Respiratory-gated single-voxel 1H-MRS was performed at 3T to quantify the content of succinate at 2.4 ppm and choline at 3.22 ppm. Results A succinate peak was seen in six patients, all of whom had germ line SDHx mutations or loss of SDHB by immunohistochemistry. Succinate peaks were also detected in two patients with metastatic wild-type GI stromal tumors and no detectable germ line SDHx mutations but with somatic epimutations in SDHC. Three patients without tumor succinate peaks retained SDHB expression, consistent with SDH functionality. In six patients with borderline or absent peaks, technical difficulties such as motion artifact rendered 1H-MRS difficult to interpret. Sequential imaging in a patient with a metastatic abdominal paraganglioma demonstrated loss of the succinate peak after four cycles of [177Lu]DOTATATE, with a corresponding biochemical response in normetanephrine. Conclusion This study has demonstrated the translation into clinical practice of in vivo metabolomic analysis using 1H-MRS in patients with SDH-deficient tumors. Potential applications include noninvasive diagnosis and disease stratification, as well as monitoring of tumor response to targeted treatments. </jats:sec
Recommended from our members
SDHC epi-mutation testing in gastrointestinal stromal tumours and related tumours in clinical practice
Abstract: The enzyme succinate dehydrogenase (SDH) functions in the citric acid cycle and loss of function predisposes to the development of phaeochromocytoma/paraganglioma (PPGL), wild type gastrointestinal stromal tumour (wtGIST) and renal cell carcinoma. SDH-deficient tumours are most commonly associated with a germline SDH subunit gene (SDHA/B/C/D) mutation but can also be associated with epigenetic silencing of the SDHC gene. However, clinical diagnostic testing for an SDHC epimutation is not widely available. The objective of this study was to investigate the indications for and the optimum diagnostic pathways for the detection of SDHC epimutations in clinical practice. SDHC promoter methylation analysis of 32 paraffin embedded tumours (including 15 GIST and 17 PPGL) was performed using a pyrosequencing technique and correlated with SDHC gene expression. SDHC promoter methylation was identified in 6 (18.7%) tumours. All 6 SDHC epimutation cases presented with SDH deficient wtGIST and 3/6 cases had multiple primary tumours. No case of constitutional SDHC promoter hypermethylation was detected. Whole genome sequencing of germline DNA from three wtGIST cases with an SDHC epimutation, did not reveal any causative sequence anomalies. Herein, we recommend a diagnostic workflow for the detection of an SDHC epimutation in a service setting
Familial wild-type gastrointestinal stromal tumour in association with germline truncating variants in both SDHA and PALB2.
Funder: DH | National Institute for Health Research (NIHR); doi: https://doi.org/10.13039/501100000272Funder: National Health ServiceFunder: European Research Council (Advanced Researcher Award) Cancer Research UK Cambridge Cancer Centre Medical Research Council (Infrastructure Award) National Health ServiceGastrointestinal stromal tumour (GIST) is a mesenchymal neoplasm arising in the gastrointestinal tract. A rare subset of GISTs are classified as wild-type GIST (wtGIST) and these are frequently associated with germline variants that affect the function of cancer predisposition genes such as the succinate dehydrogenase subunit genes (SDHA, SDHB, SDHC, SDHD) or NF1. However, despite this high heritability, familial clustering of wtGIST is extremely rare. Here, we report a mother-son diad who developed wtGIST at age 66 and 34 years, respectively. Comprehensive genetic testing revealed germline truncating variants in both SDHA (c.1534C>T (p.Arg512*)) and PALB2 (c.3113G>A (p.Trp1038*)) in both affected individuals. The mother also developed breast ductal carcinoma in-situ at age 70 years. Immunohistochemistry and molecular analysis of the wtGISTs revealed loss of SDHB expression and loss of the wild-type SDHA allele in tumour material. No allele loss was detected at PALB2 suggesting that wtGIST tumourigenesis was principally driven by succinate dehydrogenase deficiency. However, we speculate that the presence of multilocus inherited neoplasia alleles syndrome (MINAS) in this family might have contributed to the highly unusual occurrence of familial wtGIST. Systematic reporting of tumour risks and phenotypes in individuals with MINAS will facilitate the clinical interpretation of the significance of this diagnosis, which is becoming more frequent as strategies for genetic testing for hereditary cancer becomes more comprehensive
Clinical and Molecular Features of Renal and Pheochromocytoma/Paraganglioma Tumor Association Syndrome (RAPTAS): Case Series and Literature Review.
CONTEXT: The co-occurrence of pheochromocytoma (PC) and renal tumors was linked to the inherited familial cancer syndrome von Hippel-Lindau (VHL) disease more than six decades ago. Subsequently, other shared genetic causes of predisposition to renal tumors and to PC, paraganglioma (PGL), or head and neck paraganglioma (HNPGL) have been described, but case series of non-VHL-related cases of renal tumor and pheochromocytoma/paraganglioma tumor association syndrome (RAPTAS) are rare. OBJECTIVE: To determine the clinical and molecular features of non-VHL RAPTAS by literature review and characterization of a case series. DESIGN: A review of the literature was performed and a retrospective study of referrals for investigation of genetic causes of RAPTAS. RESULTS: Literature review revealed evidence of an association, in addition to VHL disease, between germline mutations in SDHB, SDHC, SDHD, TMEM127, and MAX genes and RAPTAS [defined here as the co-occurrence of tumors from both classes (PC/PGL/HNPGL and renal tumors) in the same individual or in first-degree relatives]. In both the literature review and our case series of 22 probands with non-VHL RAPTAS, SDHB mutations were the most frequent cause of non-VHL RAPTAS. A genetic cause was identified in 36.3% (8/22) of kindreds. CONCLUSION: Renal tumors and PC/PGL/HNPGL tumors share common molecular features and their co-occurrence in an individual or family should prompt genetic investigations. We report a case of MAX-associated renal cell carcinoma and confirm the role of TMEM127 mutations with renal cell carcinoma predisposition
Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study.
BACKGROUND: Germline pathogenic variants in the E-cadherin gene (CDH1) are strongly associated with the development of hereditary diffuse gastric cancer. There is a paucity of data to guide risk assessment and management of families with hereditary diffuse gastric cancer that do not carry a CDH1 pathogenic variant, making it difficult to make informed decisions about surveillance and risk-reducing surgery. We aimed to identify new candidate genes associated with predisposition to hereditary diffuse gastric cancer in affected families without pathogenic CDH1 variants. METHODS: We did whole-exome sequencing on DNA extracted from the blood of 39 individuals (28 individuals diagnosed with hereditary diffuse gastric cancer and 11 unaffected first-degree relatives) in 22 families without pathogenic CDH1 variants. Genes with loss-of-function variants were prioritised using gene-interaction analysis to identify clusters of genes that could be involved in predisposition to hereditary diffuse gastric cancer. FINDINGS: Protein-affecting germline variants were identified in probands from six families with hereditary diffuse gastric cancer; variants were found in genes known to predispose to cancer and in lesser-studied DNA repair genes. A frameshift deletion in PALB2 was found in one member of a family with a history of gastric and breast cancer. Two different MSH2 variants were identified in two unrelated affected individuals, including one frameshift insertion and one previously described start-codon loss. One family had a unique combination of variants in the DNA repair genes ATR and NBN. Two variants in the DNA repair gene RECQL5 were identified in two unrelated families: one missense variant and a splice-acceptor variant. INTERPRETATION: The results of this study suggest a role for the known cancer predisposition gene PALB2 in families with hereditary diffuse gastric cancer and no detected pathogenic CDH1 variants. We also identified new candidate genes associated with disease risk in these families. FUNDING: UK Medical Research Council (Sackler programme), European Research Council under the European Union's Seventh Framework Programme (2007-13), National Institute for Health Research Cambridge Biomedical Research Centre, Experimental Cancer Medicine Centres, and Cancer Research UK
Expression of the breast differentiation antigen NY-BR-1 in a phyllodes tumor of the vulva
We describe a phyllodes tumor of borderline malignancy in the labium majus of a 49-year-old woman. The histogenetic origin of phyllodes tumors in the vulva is controversial. Strong immunoreactivity for NY-BR-1, a novel breast differentiation antigen, was demonstrated within the epithelial components of the phyllodes tumor. A similar expression pattern was observed in mammary-like glands of the vulva. These findings provide further evidence that phyllodes tumors of the vulva might derive from mammary-like glands in the labium majus or from ectopic breast tissue