221 research outputs found

    Feet and Leg Traits are Moderately to Lowly Heritable in Red Angus Cattle

    Get PDF
    Objective: The goals of this study were to identify feet and leg indicator traits to be used in beef breed genetic evaluations and develop a scoring method that can be easily adopted by cattle producers. Description: Data were analyzed on 1,885 Red Angus cattle, and after editing, 1,720 records were used for analysis. Feet and leg phenotypes were obtained from August 2015 through September 2017 for 14 traits shown in the following table. Trained livestock evaluators collected measurements using an electronic tablet with offline data storage capabilities. Heritability estimates for all 14 traits were calculated from two different measurements of scale, the original 1-100 scale (1 and 100 are extreme, 50 is desirable), and scores truncated to a 1-9 scale (1 and 9 are extreme, 5 is desirable). Genetic parameters were estimated using maximum log likelihood procedures. The Bottom Line: Feet and leg traits are moderately to lowly heritable; however, producers can still select on traits for improved soundness. Scoring on a simpler, less granular measurement of scale (1-9) is appropriate to be used in further research

    7 Tesla MRI of Balo's concentric sclerosis versus multiple sclerosis lesions

    Get PDF
    Background: Baló’s concentric sclerosis (BCS) is a rare condition characterized by concentrically layered white matter lesions. While its pathogenesis is unknown, hypoxia-induced tissue injury and chemotactic stimuli have been proposed as potential causes of BCS lesion formation. BCS has been suggested to be a variant of multiple sclerosis (MS). Here, we aimed to elucidate similarities and differences between BCS and MS by describing lesion morphology and localization in high-resolution 7 Tesla (7 T) magnetic resonance imaging (MRI) scans. Methods: Ten patients with Baló-type lesions underwent 7 T MRI, and 10 relapsing remitting MS patients served as controls. The 7 T MR imaging protocol included 3D T1-weighted (T1w) magnetization-prepared rapid gradient echo, 2D high spatial resolution T2*-weighted (T2*w) fast low-angle shot and susceptibility-weighted imaging. Results: Intralesional veins were visible in the center of all but one Baló-type lesion. Four Baló-type lesions displayed inhomogeneous intralesional T2*w signal intensities, which are suggestive of microhemorrhages or small ectatic venules. Eight of 10 BCS patients presented with 97 additional lesions, 36 of which (37%) had a central vein. Lesions involving the cortical gray matter and the U-fibers were not detected in BCS patients. Conclusion: Our findings support the hypothesis that BCS and MS share common pathogenetic mechanisms but patients present with different lesion phenotypes

    Inhomogeneous Phases in a Double-Exchange Magnet with Long Range Coulomb Interactions

    Full text link
    We consider a model with competing double-exchange (ferromagnetic) and super-exchange (anti-ferromagnetic) interactions in the regime where phase separation takes place. The presence of a long range Coulomb interaction frustrates a macroscopic phase separation, and favors microscopically inhomogeneous configurations. We use the variational Hartree-Fock approach, in conjunction with Monte-Carlo simulations to study the geometry of such configurations in a two-dimensional system. We find that an array of diamond shaped ferromagnetic droplets is the preferred configuration at low electronic densities, while alternating ferromagnetic and anti-ferromagnetic diagonal stripes emerge at higher densities. These findings are expected to be relevant for thin films of colossal magneto-resistive manganates.Comment: 15 pages, 9 figures. Journal Ref. added, errors correcte

    An ancestral 10-bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy

    Get PDF
    The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6–83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses

    The inner junction protein CFAP20 functions in motile and non-motile cilia and is critical for vision

    Get PDF
    Motile and non-motile cilia are associated with mutually-exclusive genetic disorders. Motile cilia propel sperm or extracellular fluids, and their dysfunction causes primary ciliary dyskinesia. Non-motile cilia serve as sensory/signalling antennae on most cell types, and their disruption causes single-organ ciliopathies such as retinopathies or multi-system syndromes. CFAP20 is a ciliopathy candidate known to modulate motile cilia in unicellular eukaryotes. We demonstrate that in zebrafish, cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy. Hence, CFAP20 functions within a structural/functional hub centered on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associated domains or macromolecular complexes. Our findings suggest an uncharacterised pathomechanism for retinal dystrophy, and potentially for motile and non-motile ciliopathies in general.</p

    GPR30, the Non-Classical Membrane G Protein Related Estrogen Receptor, Is Overexpressed in Human Seminoma and Promotes Seminoma Cell Proliferation

    Get PDF
    BACKGROUND: Testicular germ cell tumours are the most frequent cancer of young men with an increasing incidence all over the world. Pathogenesis and reasons of this increase remain unknown but epidemiological and clinical data have suggested that fetal exposure to environmental endocrine disruptors (EEDs) with estrogenic effects, could participate to testicular germ cell carcinogenesis. However, these EEDs (like bisphenol A) are often weak ligands for classical nuclear estrogen receptors. Several research groups recently showed that the non classical membrane G-protein coupled estrogen receptor (GPER/GPR30) mediates the effects of estrogens and several xenoestrogens through rapid non genomic activation of signal transduction pathways in various human estrogen dependent cancer cells (breast, ovary, endometrium). The aim of this study was to demonstrate that GPER was overexpressed in testicular tumours and was able to trigger JKT-1 seminoma cell proliferation. RESULTS: We report here for the first time a complete morphological and functional characterization of GPER in normal and malignant human testicular germ cells. In normal adult human testes, GPER was expressed by somatic (Sertoli cells) and germ cells (spermatogonia and spermatocytes). GPER was exclusively overexpressed in seminomas, the most frequent testicular germ cell cancer, localized at the cell membrane and triggered a proliferative effect on JKT-1 cells in vitro, which was completely abolished by G15 (a GPER selective antagonist) and by siRNA invalidation. CONCLUSION: These results demonstrate that GPER is expressed by human normal adult testicular germ cells, specifically overexpressed in seminoma tumours and able to trigger seminoma cell proliferation in vitro. It should therefore be considered rather than classical ERs when xeno-estrogens or other endocrine disruptors are assessed in testicular germ cell cancers. It may also represent a prognosis marker and/or a therapeutic target for seminomas

    Assessing the digenic model in rare disorders using population sequencing data

    Get PDF
    An important fraction of patients with rare disorders remains with no clear genetic diagnostic, even after whole-exome or whole-genome sequencing, posing a difficulty in giving adequate treatment and genetic counseling. The analysis of genomic data in rare disorders mostly considers the presence of single gene variants in coding regions that follow a concrete monogenic mode of inheritance. A digenic inheritance, with variants in two functionally-related genes in the same individual, is a plausible alternative that might explain the genetic basis of the disease in some cases. In this case, digenic disease combinations should be absent or underrepresented in healthy individuals. We develop a framework to evaluate the significance of digenic combinations and test its statistical power in different scenarios. We suggest that this approach will be relevant with the advent of new sequencing efforts including hundreds of thousands of samples

    Clinical, genetic, epidemiologic, evolutionary, and functional delineation of TSPEAR-related autosomal recessive ectodermal dysplasia 14

    Get PDF
    TSPEAR variants cause autosomal recessive ectodermal dysplasia (ARED) 14. The function of TSPEAR is unknown. The clinical features, the mutation spectrum, and the underlying mechanisms of ARED14 are poorly understood. Combining data from new and previously published individuals established that ARED14 is primarily characterized by dental anomalies such as conical tooth cusps and hypodontia, like those seen in individuals with WNT10A-related odontoonychodermal dysplasia. AlphaFold-predicted structure-based analysis showed that most of the pathogenic TSPEAR missense variants likely destabilize the β-propeller of the protein. Analysis of 100000 Genomes Project (100KGP) data revealed multiple founder TSPEAR variants across different populations. Mutational and recombination clock analyses demonstrated that non-Finnish European founder variants likely originated around the end of the last ice age, a period of major climatic transition. Analysis of gnomAD data showed that the non-Finnish European population TSPEAR gene-carrier rate is ∼1/140, making it one of the commonest AREDs. Phylogenetic and AlphaFold structural analyses showed that TSPEAR is an ortholog of drosophila Closca, an extracellular matrix-dependent signaling regulator. We, therefore, hypothesized that TSPEAR could have a role in enamel knot, a structure that coordinates patterning of developing tooth cusps. Analysis of mouse single-cell RNA sequencing (scRNA-seq) data revealed highly restricted expression of Tspear in clusters representing enamel knots. A tspeara−/−;tspearb−/− double-knockout zebrafish model recapitulated the clinical features of ARED14 and fin regeneration abnormalities of wnt10a knockout fish, thus suggesting interaction between tspear and wnt10a. In summary, we provide insights into the role of TSPEAR in ectodermal development and the evolutionary history, epidemiology, mechanisms, and consequences of its loss of function variants
    corecore