221 research outputs found

    The interface of gravity and quantum mechanics illuminated by Wigner phase space

    Full text link
    We provide an introduction into the formulation of non-relativistic quantum mechanics using the Wigner phase-space distribution function and apply this concept to two physical situations at the interface of quantum theory and general relativity: (i) the motion of an ensemble of cold atoms relevant to tests of the weak equivalence principle, and (ii) the Kasevich-Chu interferometer. In order to lay the foundations for this analysis we first present a representation-free description of the Kasevich-Chu interferometer based on unitary operators.Comment: 69 pages, 6 figures, minor changes to match the published version. The original publication is available at http://en.sif.it/books/series/proceedings_fermi or http://ebooks.iospress.nl/volumearticle/3809

    Light shifts in atomic Bragg diffraction

    Get PDF
    Bragg diffraction of an atomic wave packet in a retroreflective geometry with two counterpropagating optical lattices exhibits a light shift induced phase. We show that the temporal shape of the light pulse determines the behavior of this phase shift: In contrast to Raman diffraction, Bragg diffraction with Gaussian pulses leads to a significant suppression of the intrinsic phase shift due to a scaling with the third power of the inverse Doppler frequency. However, for box-shaped laser pulses, the corresponding shift is twice as large as for Raman diffraction. Our results are based on approximate, but analytical expressions as well as a numerical integration of the corresponding Schr\"odinger equation.Comment: 6 pages, 5 figure

    A high-gain Quantum free-electron laser: emergence & exponential gain

    Full text link
    We derive an effective Dicke model in momentum space to describe collective effects in the quantum regime of a free-electron laser (FEL). The resulting exponential gain from a single passage of electrons allows the operation of a Quantum FEL in the high-gain mode and avoids the experimental challenges of an X-ray FEL oscillator. Moreover, we study the intensity fluctuations of the emitted radiation which turn out to be super-Poissonian

    Regimes of atomic diffraction: Raman versus Bragg diffraction in retroreflective geometries

    Get PDF
    We provide a comprehensive study of atomic Raman and Bragg diffraction when coupling to a pair of counterpropagating light gratings (double diffraction) or to a single one (single diffraction) and discuss the transition from one case to the other in a retroreflective geometry as the Doppler detuning changes. In contrast to single diffraction, double Raman loses its advantage of high diffraction efficiency for short pulses and has to be performed in a Bragg-type regime. Moreover, the structure of double diffraction leads to further limitations for broad momentum distributions on the efficiency of mirror pulses, making the use of (ultra) cold ensembles essential for high diffraction efficiency.Comment: 16 pages, 14 figure

    Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models

    Get PDF
    In silico experiments bear the potential to further the understanding of biological transport processes by allowing a systematic modification of any spatial property and providing immediate simulation results for the chosen models. We consider cell polarization and spatial reorganization of membrane proteins which are fundamental for cell division, chemotaxis and morphogenesis. Our computational study is motivated by mating and budding processes of S. cerevisiae. In these processes a key player during the initial phase of polarization is the GTPase Cdc42 which occurs in an active membrane-bound form and an inactive cytosolic form. We use partial differential equations to describe the membrane-cytosol shuttling of Cdc42 during budding as well as mating of yeast. The membrane is modeled as a thin layer that only allows lateral diffusion and the cytosol is modeled as a volume. We investigate how cell shape and diffusion barriers like septin structures or bud scars influence Cdc42 cluster formation and subsequent polarization of the yeast cell. Since the details of the binding kinetics of cytosolic proteins to the membrane are still controversial, we employ two conceptual models which assume different binding kinetics. An extensive set of in silico experiments with different modeling hypotheses illustrate the qualitative dependence of cell polarization on local membrane curvature, cell size and inhomogeneities on the membrane and in the cytosol. We examine that spatial inhomogenities essentially determine the location of Cdc42 cluster formation and spatial properties are crucial for the realistic description of the polarization process in cells. In particular, our computer simulations suggest that diffusion barriers are essential for the yeast cell to grow a protrusion

    High-gain quantum free-electron laser: long-time dynamics and requirements

    Get PDF
    We solve the long-time dynamics of a high-gain free-electron laser in the quantum regime. In this regime each electron emits at most one photon on average, independently of the initial field. In contrast, the variance of the photon statistics shows a qualitatively different behavior for different initial states of the field. We find that the realization of a seeded Quantum FEL is more feasible than self-amplified spontaneous emission

    Interference of Clocks: A Quantum Twin Paradox

    Get PDF
    The phase of matter waves depends on proper time and is therefore susceptible to special-relativistic (kinematic) and gravitational time dilation (redshift). Hence, it is conceivable that atom interferometers measure general-relativistic time-dilation effects. In contrast to this intuition, we show that light-pulse interferometers without internal transitions are not sensitive to gravitational time dilation, whereas they can constitute a quantum version of the special-relativistic twin paradox. We propose an interferometer geometry isolating the effect that can be used for quantum-clock interferometry.Comment: 9 Pages, 2 Figure

    Rayleigh-to-shear wave conversion at the tunnel face - from 3D-FD modeling to ahead-of-drill exploration

    Get PDF
    For a safe tunnel excavation it is important to predict lithological and structural heterogeneities ahead of the construction. conventional tunnel seismic prediction systems utilize body waves (P- and S-waves) that are directly generated at the tunnel walls or near the cutter head of the tunnel boring machine (TBM). In this work we propose a new prediction strategy that has been discovered by 3-D elastic finite-difference (FD) modeling: Rayleigh waves arriving at the front face are converted into high amplitude S-waves propagating further ahead. Reflected or backscattered S-waves are converted back into Rayleigh waves which can be recorded along the side walls. We name these waves RSSR waves. In our approach the front face acts as a S-wave transceiver. One technical advantage is that both the sources and the receivers may be placed behind the cutter head of the TBM. The modeling reveals that the RSSR waves exhibit significantly higher amplitudes than the directly reflected body waves. The excavation damage zone causes dispersion of the RSSR wave leading to multi-modal reflection response. For the detection of geological interfaces ahead RSSR waves recorded along the side walls are corrected for dispersion and stacked. From the arrival times the distance to the S-S reflection point can be estimated. A recurrent application, while the tunnel approaches the interface, allows one to quantify the orientation of the reflecting interfaces as well. Our approach has been successfully verified in a field experiment at the Piora adit of the Gotthard base tunnel. The distance to the Piora fault zone estimated from stacked RSSR events agrees well with the information obtained by geological surveying and exploratory drilling

    Proper time in atom interferometers: Diffractive versus specular mirrors

    Full text link
    We compare a conventional Mach-Zehnder light-pulse atom interferometer based on diffractive mirrors with one that uses specular reflection. In contrast to diffractive mirrors that generate a symmetric configuration, specular mirrors realized, for example, by evanescent fields lead under the influence of gravity to an asymmetric geometry. In such an arrangement the interferometer phase contains nonrelativistic signatures of proper time.Comment: 7 pages, 1 figure, 1 tabl

    Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models

    Get PDF
    In silico experiments bear the potential for further understanding of biological transport processes by allowing a systematic modification of any spatial property and providing immediate simulation results. Cell polarization and spatial reorganization of membrane proteins are fundamental for cell division, chemotaxis and morphogenesis.Wechose the yeast Saccharomyces cerevisiae as an exemplary model system which entails the shuttling of small Rho GTPases such as Cdc42 and Rho, between an active membrane-bound form and an inactive cytosolic form.Weused partial differential equations to describe the membrane-cytosol shuttling of proteins. In this study, a consistent extension of a class of 1D reaction-diffusion systems into higher space dimensions is suggested. The membrane is modeled as a thin layer to allow for lateral diffusion and the cytosol is modeled as an enclosed volume. Two well-known polarization mechanisms were considered. One shows the classical Turinginstability patterns, the other exhibits wave-pinning dynamics. For both models, we investigated how cell shape and diffusion barriers like septin structures or bud scars influence the formation of signaling molecule clusters and subsequent polarization. An extensive set of in silico experiments with different modeling hypotheses illustrated the dependence of cell polarization models on local membrane curvature, cell size and inhomogeneities on the membrane and in the cytosol. In particular, the results of our computer simulations suggested that for both mechanisms, local diffusion barriers on the membrane facilitate Rho GTPase aggregation, while diffusion barriers in the cytosol and cell protrusions limit spontaneous molecule aggregations of active Rho GTPase locally
    corecore